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MRCET VISION 

 To become a model institution in the fields of Engineering, Technology and Management.  

 To have a perfect synchronization of the ideologies of MRCET with challenging demands of 

International Pioneering Organizations. 

MRCET MISSION 

To establish a pedestal for the integral innovation, team spirit, originality and competence in the 

students, expose them to face the global challenges and become pioneers of Indian vision of 

modern society. 

MRCET QUALITY POLICY. 

 To pursue continual improvement of teaching learning process of Undergraduate and Post 

Graduate programs in Engineering & Management vigorously. 

 To provide state of art infrastructure and expertise to impart the quality education.  
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PROGRAM OUTCOMES 
(PO’s) 

Engineering Graduates will be able to: 
1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering 

fundamentals, and an engineering specialization to the solution of complex engineering 

problems. 

2. Problem analysis: Identify, formulate, review research literature, and analyze complex 

engineering problems reaching substantiated conclusions using first principles of 

mathematics, natural sciences, and engineering sciences. 

3. Design / development of solutions: Design solutions for complex engineering problems 

and design system components or processes that meet the specified needs with appropriate 

consideration for the public health and safety, and the cultural, societal, and environmental 

considerations. 

4. Conduct investigations of complex problems: Use research-based knowledge and 

research methods including design of experiments, analysis and interpretation of data, and 

synthesis of the information to provide valid conclusions. 

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and 

modern engineering and IT tools including prediction and modeling to complex 

engineering activities with an understanding of the limitations. 

6. The engineer and society: Apply reasoning informed by the contextual knowledge to 

assess societal, health, safety, legal and cultural issues and the consequent responsibilities 

relevant to the professional engineering practice. 

7. Environment and sustainability: Understand the impact of the professional engineering 

solutions in societal and environmental contexts, and demonstrate the knowledge of, and 

need for sustainable development. 

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and 

norms of the engineering practice. 

9. Individual and team work: Function effectively as an individual, and as a member or 

leader in diverse teams, and in multidisciplinary settings. 

10. Communication: Communicate effectively on complex engineering activities with the 

engineering community and with society at large, such as, being able to comprehend and 

write effective reports and design documentation, make effective presentations, and give 

and receive clear instructions. 

11. Project management and finance: Demonstrate knowledge and understanding of the 

engineering and management principles and apply these to one’s own work, as a member 

and leader in a team, to manage projects and in multi disciplinary environments. 

12. Life- long learning: Recognize the need for, and have the preparation and ability to     

engage in independent and life-long learning in the broadest context of technological 

change. 
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DEPARTMENT OF AERONAUTICAL ENGINEERING 

VISION 

Department of Aeronautical Engineering aims to be indispensable source in Aeronautical 

Engineering which has a zeal to provide the value driven platform for the students to acquire 

knowledge and empower themselves to shoulder higher responsibility in building a strong 

nation. 

MISSION 

The primary mission of the department is to promote engineering education and research. To 

strive consistently to provide quality education, keeping in pace with time and technology.  

Department passions to integrate the intellectual, spiritual, ethical and social development of the 

students for shaping them into dynamic engineers. 

 

QUALITY POLICY STATEMENT 

Impart up-to-date knowledge to the students in Aeronautical area to make them quality 

engineers. Make the students experience the applications on quality equipment and tools. 

Provide systems, resources and training opportunities to achieve continuous improvement. 

Maintain global standards in education, training and services. 
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PROGRAM EDUCATIONAL OBJECTIVES – Aeronautical 

Engineering 

1. PEO1 (PROFESSIONALISM & CITIZENSHIP): To create and sustain a community of 

learning in which students acquire knowledge and learn to apply it professionally with due 

consideration for ethical, ecological and economic issues. 

2. PEO2 (TECHNICAL ACCOMPLISHMENTS): To provide knowledge based services to 

satisfy the needs of society and the industry by providing hands on experience in various 

technologies in core field. 

3. PEO3 (INVENTION, INNOVATION AND CREATIVITY): To make the students to design, 

experiment, analyze, and interpret in the core field with the help of other multi disciplinary 

concepts wherever applicable. 

4. PEO4 (PROFESSIONAL DEVELOPMENT): To educate the students to disseminate 

research findings with good soft skills and become a successful entrepreneur. 

5. PEO5 (HUMAN RESOURCE DEVELOPMENT): To graduate the students in building 

national capabilities in technology, education and research 

 

PROGRAM SPECIFIC OUTCOMES – Aeronautical Engineering 

1. To mould students to become a professional with all necessary skills, personality and sound 

knowledge in basic and advance technological areas. 

2. To promote understanding of concepts and develop ability in design manufacture and 

maintenance of aircraft, aerospace vehicles and associated equipment and develop application 

capability of the concepts sciences to engineering design and processes. 

3. Understanding the current scenario in the field of aeronautics and acquire ability to apply 

knowledge of engineering, science and mathematics to design and conduct experiments in the 

field of Aeronautical Engineering. 

4. To develop leadership skills in our students necessary to shape the social, intellectual, business 

and technical worlds. 
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MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY 
       

 

IV Year B. Tech, ANE-I Sem 

  

                    (R15A0368) MECHANICAL VIBRATIONS AND                 

                      STRUCTURAL DYNAMICS 

 

Objectives:  

 To gain fundamental knowledge on vibration and related systems in the context of Aircraft 

Structures 

 To give Exposure on damped and undamped vibratory systems. 

 Basic knowledge on dynamic balancing of rotor system 

 

UNIT-I  

FUNDAMENTALS OF VIBRATION: Brief history of vibration, Importance of the study of vibration, basic 

concepts of vibration, classification of vibrations, vibration analysis procedure, spring elements, mass or 

inertia elements, damping elements, harmonic analysis. FREE VIBRATION OF SINGLE DEGREE OF 

FREEDOM SYSTEMS: Introduction, Free vibration of an undamped translational system, free vibration of 

an undamped torsional system, stability conditions, Raleigh’s energy method, free vibration with 

viscous damping, free vibration with coulomb damping, free vibration with hysteretic damping.  

 

UNIT-II  

HARMONICALLY EXITED VIBRATIONS: Introduction, Equation of motion, response of an undamped 

system under harmonic force, Response of a damped system under harmonic force, Response of a 

damped system under harmonic motion of the base, Response of a damped system under rotating 

unbalance, forced vibration with coulomb damping, forced vibration with hysteresis damping.  

 

UNIT-III  

VIBRATION UNDER GENERAL FORCING CONDITIONS: Introduction, Response under a general periodic 

force, Response under a periodic force of irregular form, Response under a non periodic force, 

convolution integral. Two Degree of Freedom Systems: Introduction, Equation of motion for forced 

vibration, free vibration analysis of an undamped system, Torsional system, Coordinate coupling and 

principal coordinates, forced vibration analysis.  

 

UNIT-IV  

MULTIDEGREE OF FREEDOM SYSTEMS: Introduction, Modeling of Continuous systems as multi degree 

of freedom systems, Using Newtons second law to derive equations of motion, Influence coefficients, 

Free and Forced vibration of undamped systems, Forced vibration of viscously damped systems. 

Determination Of Natural Frequencies and Mode Shapes: Introduction, Dunkerleys formula, Rayleighs 

method, Holzers method, Matrix iteration method, Jacobi;s method.   

 

 

UNIT-V  

L T/P/D C 

5 1/-/- 4 
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CONTINUOUS SYSTEMS: Transverse vibration of a spring or a cable, longitudinal vibration of bar or rod, 

Torsional vibration of a bar or rod, Lateral vibration of beams, critical speed of rotors.  

 

Text Books:  

1. Mechanical Vibrations by S.S.Rao. 

2. Mechanical Vibrations by V.P.Singh 

 

Reference Books: 

1. Mechanical Vibrations by G.K. Grover  

2. Mechanical Vibrations by W.T. Thomson  

3. Mechanical vibrations: theory and application to structural dynamics, Michel Géradin, Daniel Rixen, 

John Wiley, 1997 

 

Outcomes: 

 Fundamental frequency of Multi- DOF systems can estimate by various methods. 

 Effect of unbalance in rotating masses has been studied. 

 How to determine eigenvalues and eigenvectors for a vibratory system has analysed  
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MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY 

DEPARTMENT OF AERONAUTICAL ENGINEERING 

MECHANICAL VIBRATION AND STRUCTURAL DYNAMICS 

MODEL PAPER-I(R13) 

 MAXIMUM MARKS: 75 

PART A          Max Marks: 25 

i. All questions in this section are compulsory 

ii. Answer in TWO to FOUR sentences. 

 

1. Find mass W, if the system has a natural frequency of 10 Hz shown in fig.1. Take K1 
= 2 N/mm, K2 = 1.5 N/mm, K3 = 3 N/mm and K4 = K5 = 1.5 N/mm.                      
[3] 

 
 

 

 

 

 

 

 

 

 

 

2. What is vibration; write short notes on importance of vibration.                                             
[2] 

 

3. What is meant by vibration isolation and transmissibility                                                          
[3] 

 

4. Derive the expression for natural frequency of undamped 2 DOF torsional vibration 
system.  [3]  
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5. Write shortnotes on vibration isolation                                                                                        

[2] 
 

6. What is meant by coordinate coupling explain briefly                                                                
[2] 

 

7. Define (1) Fundamental frequency(2) Critical damping co-efficient (3) Time period                
[3] 

 

8. Explain briefly about Frahm’s read Tachometer with near sketch.                                             
[2] 

 

9. What is meant by Eigenvalue and Eigenvector and explain with respect to vibration 
with an example.                                                                                                                                  
[3] 

 

10. Write short notes about self-excitation and stability analysis                                                      
[2] 

                                      

 

PART B         Max Marks:  50 

i. Answer only one question among the two questions in choice. 

ii. Each question answer (irrespective of the bits) carries 10M. 

 

 11. A weight attached to a spring of stiffness 625 N/m has a viscous damping device. 
When the weight is displaced and released, the period of vibration is found to be 2 
seconds, and the ratio of consecutive amplitudes is 4 to 1. Determine the amplitude and 
phase when a Force F(t) = 20 Cos(5t)  acts on the system                      
[10] 

OR 
 
12. An unknown mass ‘m’ kg attached at the end of an unknown spring ‘k’ has a natural 
frequency of 100 cpm when 0.5 kg mass is added to ‘m’, the natural frequency is altered 
by 25% Determine the unknowns ‘m’ and ‘k’ ? ii) A spring mass system has a natural 
frequency of 10 rad/sec. The mass is pulled down from its static equilibrium position by 
5 mm and given an upward velocity of 10 cm/sec, determine the ensuing motion.                      
[10] 
 
 
13. In a spring mass damper system the amplitude decays to half the original value in 4 
oscillations and it takes 0.2 seconds to complete these oscillations. If the mass is set in 
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to free vibrations with an initial displacement of 5 mm and initial velocity of 0.5 m/sec, 
determine i) the subsequent motion ii) maximum amplitude of the mass iii) Time elapsed 
while the amplitude decays to less than or equal to 0.5 mm.                      
[10] 
 

OR 
 
 
14. Why the vibration analysis for a vehicle free vibration due to engine balance for the 
single degree of freedom is required? Explain with an example.                      
[10] 
 
 
15 a) A uniform rod hangs freely from a hinge at the top. Using the three modes Φ1= x/l, 
Φ2= sin(x/l), and Φ3 = sin (2x/l), determine the characteristic equation by using the 
Rayleigh-Ritz method?                                                                                                                              
b). Determine the flexibility matrix for the spring-mass system shown in Fig.15.1                     
[5+5] 
 
 
 
 
 
 
 
 
 
 

 

 

OR 
16. Using Holzer's method, determine the natural frequencies and mode shapes of the 
torsional system of Fig. 16.1 when J = 1.0 kg-m2 and K = 0.20 X 106 Nm/rad.                      
[10] 
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.        

17. Using the Rayleigh-Ritz method, determine the first two natural frequencies and 
mode shapes for the longitudinal vibration of a uniform rod with a spring of stiffness 
k0 attached to the free end, as shown in Fig17.1. Use the first two normal modes of 
the fixed-free rod in longitudinal motion.                      
[10] 

   

   

   

 

 

 

 

 

 

 

OR 

 

18. A machine of 20 kg mass is to be mounted on a vibrating base. The base vibration 
rages from 60 Hz to 75 Hz. And the amplitude varies from 2 mm to 3 mm. If the 
machine is to be isolated such that the amplitude is less than or equal to 0.5 mm 
determine the equivalent stiffness of the isolator to be used?                      
[10] 

 
 
19. Why the vibration analysis for a vehicle free vibration due to engine balance for the 
single degree of freedom is required? Explain with an example.                      
[10] 
 

OR 
20. What is the need for vibration analysis for a vehicle free vibration due to road 
roughness for the single degree of freedom? Explain with an example.                      
[10] 
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MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY 

DEPARTMENT OF AERONAUTICAL ENGINEERING 

MECHANICAL VIBRATION AND STRUCTURAL DYNAMICS 

MODEL PAPER-II(R13) 

 
 

MAXIMUM MARKS: 75 

PART A          Max Marks: 25 

iii. All questions in this section are compulsory 

iv. Answer in TWO to FOUR sentences. 

 

1. Derive the expression for natural  frequency of undamped free vibration system                      

(3M) 

2. Derive the equation  of machine of undamped forced vibratory system                      

(3M) 

3. Explain briefly about hysteresis dumpily and coulomb dumpily.                      

(2M) 

4. Find the natural frequency of the system shown in fig-1. Take �� =�� =1500 

N/m, �� =2000 N/m and m= 5kg                      

(3M) 

 
 

 

 

 

 

5. Derive the expression for natural frequency of undamped 2 DOF spring –mass 

system.                (3M) 

6. Write short notes on inference coefficients                      

(2M) 

7. Write the procedure to derive equation of motion using Lagrange’s equation                      

(2M) 
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8. Define the term vibration and write different types of vibrations                      

(2M) 

9. Define (1) Logarithmic decrement 

             (2) Periodic and a periodic motion  

             (3) Potential energy                      

(3M) 

 

10. Write short notes an 

 (1) Principal coordinates  

(2) Semi-definite system                      

(2M)    

 

 

PART B         Max Marks:  50 

iii. Answer only one question among the two questions in choice. 

iv. Each question answer (irrespective of the bits) carries 10M. 

 

11.  What effect does a decrease in mass have on the frequency of a systems                      

(10M)    

                                                (OR) 

12. A cylinder of mass M radius’ r ‘rolls without slipping on a cylindrical surface of 

radius ‘R’. Find the natural frequency for small oscillation about the lowest point.                      

(10M)    

13. Find the steady state response of undamped single DOR systems subjected to 

the force  

F(t)= ����	
  by using the method of Laplace transformation                      

(10M)    

                                                (OR) 

14. Two   rotors A & B are attached to the ends of a shaft 800mm long. The mass of 

the rotor ‘A’ is 600 kg and is radius of gyration is 500mm. The corresponding 

values of rotor B 700kg and 600mm respectively. The shaft is 90mm diameter for 

the first 300mm, 150mm for next 180mm length and 120mm for the remaining 

length. Modulus of rigidity of the shaft material is 0.8x10
MN/��. Find  

1)  The position of the node. 

2) The frequency of torsional  vibration                      

(10M)    
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15. A uniform bar of length l is fixed at one end and the free end is stretched uniformly  �� and released at t=o. find the resulting longitudinal vibration.                                                       

(10M)    

                                                (OR) 

16. A uniform circled shaft of length l is fixed at the two ends. at its middle point a 

torque To is applied which twists it by �� radians at the middle point. If the torque 

is released suddenly. Find the subsequent motion.                                                                         

(10M)    

17. Compare the mode shape of a rotating shaft with a stationary shaft assuming that 

the shaft is rotating on a soft  bearing                                                                                              

(10M)    

                                                (OR) 

18. (a) what is a principal coordinate  

(b) the equation of motion of a two degrees of freedom system is given by 

�� 00 ���
�� �  + � 2� � �� � �� 
���

�!
"     #$�%     =  #00%  

The eigenvectors for the above system given by     X1= � 1�. &� �   , X2= � 1'(. �� � 
Calculate the principal coordinates of the system.                      

(10M)    

19. a) What are static and dynamic couplings? 

b) Derive the differential equations governing free vibration of the system shown 

in figure 19.1, comprising a straight slender balance Supported by two springs 

and discuss the coupling using x and θ as generalized coordinates                      

(4+6M)    

 
 

 

OR 
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20. What is the need for vibration analysis for a vehicle free vibration due to road 
roughness for the single degree of freedom? Explain with an example.                      
(10M)                                                         
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MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY 

DEPARTMENT OF AERONAUTICAL ENGINEERING 

MECHANICAL VIBRATION AND STRUCTURAL DYNAMICS 

MODEL PAPER-III(R13) 

MAXIMUM MARKS: 75 

PART A          Max Marks: 25 

iAll questions in this section are compulsory 

iiAnswer in TWO to FOUR sentences. 

 

1. Derive the expression for natural  frequency of undamped free vibration system 

(3M) 

2. Derive the equation  of machine of undamped forced vibratory system.(3M) 

3. Explain briefly about hysteresis dumpily and coulomb dumpily.(2M) 

4. Find the natural frequency of the system shown in fig-1. Take ��=��=1500 

N/m,��=2000 N/m and m= 5kg (3M) 

 
5. Derive the expression for natural  frequency  of undamped  2 DOF spring –mass 

system.(3M) 

6. Write short notes on inference coefficients (2M) 

7. Write the procedure to derive equation of motion using Lagrange’s equation(2M) 

8. Define the term vibration and write different types of vibrations(2M) 

9. Define (1) Logarithmic decrement 

             (2) Periodic and a periodic motion  

            (3) Potential energy              (3M) 

 

10. Write short notes an 

 (1) Principal coordinates  
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(2) Semi-definite system ( 2M)    

 

PART B         Max Marks:  50 

I Answer only one question among the two questions in choice. 

       II Each question answer (irrespective of the bits) carries 10M. 

11. What effect does a decrease in mass have on the frequency of a systems 

(OR) 

12. A cylinder of mass M radius’ r ‘rolls without slipping on a alindrical surface of radius 

‘R’. Find the natural frequency for small oscillation about the lowest point. 

13. Find the steady state response of undamped single DOR systems subjected to the 

force  

F(t)= ����	
 by using the method of laplace transformation  

(OR) 

14. Two   rotors A & B are attached to the ends of a shaft 800mm long. The mass of the 

rotor ‘A’ is 600 kg and is radius of gyration is 500mm. The corresponding values of 

rotor B 700kg and 600mm respectively. The shaft is 90mm diameter for the first 

300mm, 150mm for next 180mm length and 120mm for the remaining length. 

Modulus of rigidity of the shaft material is 0.8x10
MN/��. Find  

3)  The position of the node. 

4) The frequency of torsional  vibration 

15. A uniform bar of length l is fixed at one end and the free end is stretched uniformly  �� and released at t=o. find the resulting longitudinal vibration. 

(OR) 

16. A uniform circled shaft of length l is fixed at the two ends at its middle point a torque 

To is applied which twists it by �� radians at the middle point. If the torque is 

released suddenly. Find the subsequent motion. 

17. Compare the mode shape of a rotating shaft with a stationary shaft assuming that 

the shaft is rotating on a soft bearing. 

(OR) 

18. (a) what is a principal coordinate  

(b) the equation of motion of a two degrees of freedom system is given by 

�� 00 ���
�� �  + � 2� � �� � �� 
���

�!
"     #$�%     =  #00%  
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The eigen vectors for the above system or given by     X1= � 1�. &� �   , X2= � 1'(. �� � 
 Calculate the principal coordinates of the system. 

19. a) what are static and dynamic couplings? 

b) derive the differential equations governing free vibration of the system shown in 

figure 19.1,comprising a straight slender balance Supported  by two springs and 

discuss the coupling using x and θ  as generalized coordinates  

 

 
 

(OR) 

20. The rigid beam shown in figure in its position of static equilibrium in the figure has a 

mass m and a mass moment of inertia 2m) � about an axis perpendicular to the 

plane of the diagram and through its centre of gravity G. assuming no horizontal 

motion of G, derive the equation of motion considering the vertical displacement of 

CG and the rotation about the CG as the coordinates. Find the frequencies of small 

oscillations and the corresponding position of nodes. Identify the natural coordinates 

for decoupling the equations of motion.  
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MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY 

DEPARTMENT OF AERONAUTICAL ENGINEERING 

MECHANICAL VIBRATION AND STRUCTURAL DYNAMICS 

MODEL PAPER-IV(R13) 

MAXIMUM MARKS: 75 

PART A          Max Marks: 25 

I All questions in this section are compulsory 

II Answer in TWO to FOUR sentences. 

1. Write a note on stiffness influence coefficients[2] 

2. Derive the equation of motion of a simple spring mass system using energy 

method[3] 

3. Define the terms SHM, resonance and time period[3] 

4. Explain briefly about and coulomb dumping[3]                                                          

5. Write short notes on vibration isolation [2] 
6.  What is meant by static coupling in vibration system [3]                                                                     
7. Write short notes on modeshapes with examples[2] 

8. Write the procedure to find eigenvalue for the 3 DOF system[3] 

9. Write short notes on transfer function in vibrations[2] 

10. List out some  vibration applications in airborne system[2] 

 

PART B         Max Marks:  50 

I Answer only one question among the two questions in choice. 

       II Each question answer (irrespective of the bits) carries 10M. 

1.  

 

11. Define force transmissibility and obtain expression for 

i. Force transmissibility  

ii. Phase leg of transmitted force with impressed force. 

(OR) 
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12. A machine of mass 100kg cylinder at 600 rpm has a rotating unbalance of 100kg 

.mm. The machine is mounted on springs having stiffness 85 KN/m and 

negligible damping. The system is contained to more axially. 

a. Determine the steady state amplitude. 

b. If the damping is introduced to reduce the amplitude. By 50%, what should be 

the damping coefficient also find damping factor. 

13.  Find the fundamental natural frequency of Transverse vibration for the student 

shown in fig.1 by dunkerles method. 

 

 

(OR) 

 

14. Find the fundament material frequency for the system shown in fig.2 by the 

method of matrix iteration  
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15. a) State the types of damping and explain in brief viscous damping.  

b) A spring mass- dashpot system has mass 10kg and stiffness 40N/m. if the 

amplitude of free vibration decreases to 25% of original value after 5 cycles. 

Determine the damping coefficient.  

 

(OR) 

 

16. Define logarithmic decrement show that logarithmic decrement can be expressed 

as S=  �*  log 

e   +,+*     (derive the expression), where   +,    is amplitude at particular maximum 

and   +*   is amplitude after on cycles. 

17. A mass of 100 kg is suspended on a spring having a stiffness of 19600 N/m and 

is acted up on by a harmonic force of 39.2 N at the undamped natural frequency. 

The damping coefficient is 98 N-S/m, determine. 

a) Undamped natural frequency  

b) Amplitude of vibration of mass. 

c) Phase difference between force and displacement.  

(OR) 

 

18. A spring is tightly stretched between two supports as shown in fig.3. The tension 

T θ In the spring may be assumed to be constant for small displacement. Obtain 

the two natural frequencies for the system. 

 
 

19. Derive the expression for longitudinal vibration of a bar. 

(OR) 

20. Derive the expression for vibration of string under tension. 
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MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY 

DEPARTMENT OF AERONAUTICAL ENGINEERING 

MECHANICAL VIBRATION AND STRUCTURAL DYNAMICS 

MODEL PAPER-V(R13) 

MAXIMUM MARKS: 75 

PART A          Max Marks: 25 

I All questions in this section are compulsory 

II Answer in TWO to FOUR sentences. 

1. Write a note on influence coefficients[2] 

2. Define the terms damping factor and logarithmic decrement[3] 

3. What are continuous systems? explain[2] 

4. Derive the equation of motion of a simple spring mass system using Newton’s laws 

of motion[3] 

5. Define the terms periodic motion, phase difference and DOF[2] 

6. Explain briefly about modal analysis [3] 

7.  Differentiate discrete systems and distributed systems in vibrations[2] 

8. Derive the equation  of machine of undamped forced vibratory system[3] 

9. Explain briefly about hysteresis dumping[2] 

10.  Explain briefly about dynamic coupling in vibration system[3]                                                         

 

PART B         Max Marks:  50 

I Answer only one question among the two questions in choice. 

       II Each question answer (irrespective of the bits) carries 10M. 

 

11. Using stodola  method find the fundamental  natural frequency and mode shape 

of the system shown in fig .1 
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(OR) 

12. a).  Derive the following terms  

i. Resonance  

ii. Simple harmonic motion  

iii. Time period 

b) Analyse the following motion 

   -�  =2 Cos (wf + 0.5) 

                 -� = 5 sin (wf +1.0) 

13. A spring of an auto mobile frailer are compressed 0.1 under its own weight. Find 

the critical speed when the auto mobile is traveling over a road with a profile 

approximated by a sine wave of amplitude 0.08m and a wavelength of 14m. 

What will be the amplitude of ………. At 60 Km/hr. 

(OR) 

14. Determine the natural frequencies and mode shapes for a system shown in fig.2.  .�    and   .�   are mass moment inertias of the discs   �/    isfor final  stiffness of 

shaft. 
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15. A steel cantilever become carrying a weight of 100gms at the free end is used as 

frequency meter. The beam has a length of 10cm, weight of 0.5gm and thickness 

of 2mm. The internal friction is equivalent to a damping ratio of 0.05. When the 

fixed end of the beam is subjected to a harmonic displacement y(t)= 0.5 Cos wt 

cm, the maximum tip displacement is observed to be 2.5cm, find the forcing 

frequency w.  

(OR) 

16. Using stodola  method find the fundamental  natural frequency and mode shape 

of the system shown in fig .1 

 
17. a).  Derive the following terms  

iv. Resonance  

v. Simple harmonic motion  

vi. Time period 

b) Analyse the following motion 

   -�  =2 Cos (wf + 0.5) 

                 -� = 5 sin (wf +1.0) 

(OR) 

18. A spring of an auto mobile trailer are compressed 0.1 under its own weight. Find 

the critical speed when the auto mobile is traveling over a road with a profile 
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approximated by a sine wave of amplitude 0.08m and a wavelength of 14m. 

What will be the amplitude of 5cm at 60 Km/hr. 

19. Derive the expression for torsional vibration of a shaft. 

(OR) 

20. Derive the expression for transverse vibration of a beam. 
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List of Symbols

Symbol Meaning English Units SI Units

constants, lengths

flexibility coefficient in./lb m/N

[a] flexibility matrix in./lb m/N

A area

constants

constants, lengths

constants

balancing weight lb N

c, viscous damping coefficient lb-sec/in.

constants

c wave velocity in./sec m/s

critical viscous damping constant lb-sec/in.

damping constant of i th damper lb-sec/in.

damping coefficient lb-sec/in.

[c] damping matrix lb-sec/in.

constants

d diameter, dimension in. m

D diameter in. m

[D] dynamical matrix

e base of natural logarithms

e eccentricity in. m

unit vectors parallel to x and y directions

E Young s modulus Pa

E[x] expected value of x

f linear frequency Hz Hz

f force per unit length lb/in. N/m

unit impulse lb-sec

force lb N

amplitude of force F(t) lb NF0

F, Fd

N # sf
'

,  f

lb/in2

e
!

x, e
!

y

s2sec2

C, C1, C2, C1, C2

N # s/m

N # s/mcij

N # s/mci

N # s/mcc

c, c0, c1, c2, Á

N # s/mc
'

B
!

B, B1, B2, Á

b, b1, b2, Á

A, A0, A1, Á

m2in2

aij

a, a0, a1, a2, Á
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force transmitted lb N

force acting on ith mass lb N

force vector lb N

impulse lb-sec

g acceleration due to gravity

g(t) impulse response function

G shear modulus

h hysteresis damping constant lb/in N/m

frequency response function

i

I area moment of inertia

[I] identity matrix

Im() imaginary part of ()

j integer

J polar moment of inertia

mass moment of inertia

k, spring constant lb/in. N/m

spring constant of i th spring lb/in. N/m

torsional spring constant lb-in/rad N-m/rad

stiffness coefficient lb/in. N/m

[k] stiffness matrix lb/in. N/m

length in. m

mass kg

i th mass kg

mass coefficient kg

[m] mass matrix kg

M mass kg

M bending moment lb-in.

torque lb-in.

amplitude of lb-in.

n an integer

n number of degrees of freedom

N normal force lb N

N total number of time steps

p pressure

p(x) probability density function of x

P(x) probability distribution function of x

P force, tension lb N

j th generalized coordinate

vector of generalized displacements

vector of generalized velocities

j th generalized force

r

radius vector in. mr
!

frequency ratio = v/vn

Qj

q
!#

q
!

qj

N/m2lb/in2

N # mMt1t2Mt0

N # mMt, Mt1, Mt2, Á

N # m

lb-sec2/in.

lb-sec2/in.

lb-sec2/in.mij

lb-sec2/in.mi

lb-sec2/in.m, m
'

l, li

kij

kt

ki

k
'

kg # m2lb-in./sec2J, J0, J1, J2, Á

m4in4

m4in4
1-1

H1iv2

N/m2lb/in2

m/s2in./sec2
N # sF

'
, F

F
!

Ft

Ft, FT
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Symbol Meaning English Units SI Units

Re( ) real part of ( )

autocorrelation function

R electrical resistance ohm ohm

R Rayleigh s dissipation function lb-in/sec

R Rayleigh s quotient

s root of equation, Laplace variable

acceleration, displacement, velocity spectrum

spectrum of x

t time sec s

ith time station sec s

T torque lb-in N-m

T kinetic energy in.-lb J

kinetic energy of ith mass in.-lb J

displacement, force transmissibility

an element of matrix [U]

axial displacement in. m

U potential energy in.-lb J

unbalanced weight lb N

[U] upper triangular matrix

linear velocity in./sec m/s

V shear force lb N

V potential energy in.-lb J

potential energy of i th spring in.-lb J

transverse deflections in. m

value of w at  in. m

value of at  in./sec m/s

nth mode of vibration

W weight of a mass lb N

W total energy in.-lb J

W transverse deflection in. m

value of W at  in. m

W(x) a function of x

x, y, z cartesian coordinates, displacements in. m

value of x at  in. m

value of at  in./sec m/s

displacement of jth mass in. m

value of x at  in. m

value of at  in./sec m/s

homogeneous part of x(t) in. m

particular part of x(t) in. m

vector of displacements in. m

value of  at  in. m

value of  at  in./sec m/s

value of  at  m/s2in./sec2t = tix
!$

x
!$

i

t = tix
!#

x
!#

i

t = tix
!

x
!

i

x
!

xp

xh

t = tjx
#

x
#

j

t = tjxj

xj

t = 0x
#

x
#

0, x
#
102

t = 0x0, x102

t = tiWi

wn

t = 0w
#

w
#

0

t = 0w0

w, w1, w2, vi

Vi

v, v0

U
!

U, Ui

uij

Td, Tf

Ti

ti

Sx1v2

Sa, Sd, Sv

1/s21/sec2
N # m/s

R1t2
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Symbol Meaning English Units SI Units

i th mode

X amplitude of x(t) in. m

amplitude of in. m

i th modal vector in. m

i th component of j th mode in. m

[X] modal matrix in. m

r th approximation to a mode shape

y base displacement in. m

Y amplitude of y (t) in. m

z relative displacement, in. m

Z amplitude of z (t) in. m

mechanical impedance lb/in. N/m

angle, constant

angle, constant

hysteresis damping constant

specific weight

logarithmic decrement

deflections in. m

static deflection in. m

Kronecker delta

determinant

increment in F lb N

increment in x in. m

increment in time t sec s

energy dissipated in a cycle in.-lb J

a small quantity

strain

damping ratio

constant, angular displacement

ith angular displacement rad rad

value of at  rad rad

value of at  rad/sec rad/s

amplitude of  rad rad

amplitude of  rad rad

transformation matrix

viscosity of a fluid

coefficient of friction

expected value of x

mass density
loss factor

standard deviation of x

stress

period of oscillation, time, time constant sec st

N/m2lb/in2s

sx

h
kg/m3lb-sec2/in4r

mx

m

kg/m # slb-sec/in2m

[l]

s2sec2eigenvalue = 1/v2l

ui1t2i

u1t2

t = 0u
#

u
#

0

t = 0uu0

ui

u

z

e

e

¢W

¢t

¢x

¢F

¢

dij

dst

d1, d2, Á

d

N/m3lb/in3g

b

b

a

Z1iv2

x - y

X
!

r

Xi
1j2

X
!
1i2

xj1t2Xj

x
!1i21t2



Symbol Meaning English Units SI Units

shear stress

angle, phase angle rad rad

phase angle in ith mode rad rad

frequency of oscillation rad/sec rad/s

ith natural frequency rad/sec rad/s

natural frequency rad/sec rad/s

frequency of damped vibration rad/sec rad/svd

vn

vi

v

fi

f

N/m2lb/in2t

Subscripts

Symbol Meaning

cri critical value

eq equivalent value

i ith value

L left plane

max maximum value

n corresponding to natural frequency

R right plane

0 specific or reference value

t torsional

Operations

Symbol Meaning

1 2
# d1 2

dt

1 2
$

d21 2

dt2

1 :2 column vector ( )

[ ] matrix

[ ]-1 inverse of [ ]

[ ]T transpose of [ ]

¢1 2 increment in ( )

l 1 2 Laplace transform of ( )

l
-11 2 inverse Laplace transform of ( )
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Galileo Galilei (1564 1642), an Italian astronomer, philosopher, and professor
of mathematics at the Universities of Pisa and Padua, in 1609 became the first
man to point a telescope to the sky. He wrote the first treatise on modern dynam-
ics in 1590. His works on the oscillations of a simple pendulum and the vibration
of strings are of fundamental significance in the theory of vibrations.
(Courtesy of Dirk J. Struik, A Concise History of Mathematics (2nd rev. ed.), Dover
Publications, Inc., New York, 1948.)

C H A P T E R  1

Fundamentals 

of Vibration

1

Chapter Outline

This chapter introduces the subject of vibrations in a relatively simple manner. It begins

with a brief history of the subject and continues with an examination of the importance

of vibration. The basic concepts of degrees of freedom and of discrete and continuous

systems are introduced, along with a description of the elementary parts of vibrating
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systems. The various classifications of vibration namely, free and forced vibration,

undamped and damped vibration, linear and nonlinear vibration, and deterministic and

random vibration are indicated. The various steps involved in vibration analysis of an

engineering system are outlined, and essential definitions and concepts of vibration are

introduced.

The concept of harmonic motion and its representation using vectors and complex

numbers is described. The basic definitions and terminology related to harmonic motion,

such as cycle, amplitude, period, frequency, phase angle, and natural frequency, are given.

Finally, the harmonic analysis, dealing with the representation of any periodic function in

terms of harmonic functions, using Fourier series, is outlined. The concepts of frequency

spectrum, time- and frequency-domain representations of periodic functions, half-range

expansions, and numerical computation of Fourier coefficients are discussed in detail.

Learning Objectives

After completing this chapter, the reader should be able to do the following:

* Describe briefly the history of vibration

* Indicate the importance of study of vibration

* Give various classifications of vibration

* State the steps involved in vibration analysis

* Compute the values of spring constants, masses, and damping constants

* Define harmonic motion and different possible representations of harmonic motion

* Add and subtract harmonic motions

* Conduct Fourier series expansion of given periodic functions

* Determine Fourier coefficients numerically using the MATLAB program

1.1 Preliminary Remarks
The subject of vibration is introduced here in a relatively simple manner. The chapter

begins with a brief history of vibration and continues with an examination of its impor-

tance. The various steps involved in vibration analysis of an engineering system are out-

lined, and essential definitions and concepts of vibration are introduced. We learn here that

all mechanical and structural systems can be modeled as mass-spring-damper systems. In

some systems, such as an automobile, the mass, spring and damper can be identified as

separate components (mass in the form of the body, spring in the form of suspension and

damper in the form of shock absorbers). In some cases, the mass, spring and damper do

not appear as separate components; they are inherent and integral to the system. For exam-

ple, in an airplane wing, the mass of the wing is distributed throughout the wing. Also, due

to its elasticity, the wing undergoes noticeable deformation during flight so that it can be

modeled as a spring. In addition, the deflection of the wing introduces damping due to rel-

ative motion between components such as joints, connections and support as well as inter-

nal friction due to microstructural defects in the material. The chapter describes the
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modeling of spring, mass and damping elements, their characteristics and the combination

of several springs, masses or damping elements appearing in a system. There follows a pre-

sentation of the concept of harmonic analysis, which can be used for the analysis of gen-

eral periodic motions. No attempt at exhaustive treatment of the topics is made in Chapter

1; subsequent chapters will develop many of the ideas in more detail.

1.2 Brief History of the Study of Vibration
1.2.1
Origins of 
the Study of 
Vibration

People became interested in vibration when they created the first musical instruments, proba-

bly whistles or drums. Since then, both musicians and philosophers have sought out the rules

and laws of sound production, used them in improving musical instruments, and passed them

on from generation to generation. As long ago as 4000 B.C. [1.1], music had become highly

developed and was much appreciated by Chinese, Hindus, Japanese, and, perhaps, the

Egyptians. These early peoples observed certain definite rules in connection with the art of

music, although their knowledge did not reach the level of a science. 

Stringed musical instruments probably originated with the hunter s bow, a weapon

favored by the armies of ancient Egypt. One of the most primitive stringed instruments, the

nanga, resembled a harp with three or four strings, each yielding only one note. An exam-

ple dating back to 1500 B.C. can be seen in the British Museum. The Museum also exhibits

an 11-stringed harp with a gold-decorated, bull-headed sounding box, found at Ur in a

royal tomb dating from about 2600 B.C. As early as 3000 B.C., stringed instruments such

as harps were depicted on walls of Egyptian tombs.

Our present system of music is based on ancient Greek civilization. The Greek philoso-

pher and mathematician Pythagoras (582 507 B.C.) is considered to be the first person to

investigate musical sounds on a scientific basis (Fig. 1.1). Among other things, Pythagoras

FIGURE 1.1 Pythagoras. (Reprinted

with permission from L. E. Navia,

Pythagoras: An Annotated Bibliography,

Garland Publishing, Inc., New York, 1990).
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1 2 3

String

Weight

FIGURE 1.2 Monochord.

conducted experiments on a vibrating string by using a simple apparatus called a mono-

chord. In the monochord shown in Fig. 1.2 the wooden bridges labeled 1 and 3 are fixed.

Bridge 2 is made movable while the tension in the string is held constant by the hanging

weight. Pythagoras observed that if two like strings of different lengths are subject to the

same tension, the shorter one emits a higher note; in addition, if the shorter string is half

the length of the longer one, the shorter one will emit a note an octave above the other.

Pythagoras left no written account of his work (Fig. 1.3), but it has been described by oth-

ers. Although the concept of pitch was developed by the time of Pythagoras, the relation

between the pitch and the frequency was not understood until the time of Galileo in the

sixteenth century.

Around 350 B.C., Aristotle wrote treatises on music and sound, making observations

such as the voice is sweeter than the sound of instruments,  and the sound of the flute is

sweeter than that of the lyre.  In 320 B.C., Aristoxenus, a pupil of Aristotle and a musician,

FIGURE 1.3 Pythagoras as a musician. (Reprinted with permission from D. E. Smith, History

of Mathematics, Vol. I, Dover Publications, Inc., New York, 1958.)
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wrote a three-volume work entitled Elements of Harmony. These books are perhaps the old-

est ones available on the subject of music written by the investigators themselves. In about

300 B.C., in a treatise called Introduction to Harmonics, Euclid, wrote briefly about  music

without any reference to the physical nature of sound. No further advances in scientific

knowledge of sound were made by the Greeks. 

It appears that the Romans derived their knowledge of music completely from the

Greeks, except that Vitruvius, a famous Roman architect, wrote in about 20 B.C. on the

acoustic properties of theaters. His treatise, entitled De Architectura Libri Decem, was lost

for many years, to be rediscovered only in the fifteenth century. There appears to have been

no development in the theories of sound and vibration for nearly 16 centuries after the

work of Vitruvius.

China experienced many earthquakes in ancient times. Zhang Heng, who served as a

historian and astronomer in the second century, perceived a need to develop an instrument

to measure earthquakes precisely. In A.D. 132 he invented the world s first seismograph [1.3,

1.4]. It was made of fine cast bronze, had a diameter of eight chi (a chi is equal to 0.237

meter), and was shaped like a wine jar (Fig. 1.4). Inside the jar was a mechanism consist-

ing of pendulums surrounded by a group of eight levers pointing in eight directions. Eight

dragon figures, with a bronze ball in the mouth of each, were arranged on the outside of the

seismograph. Below each dragon was a toad with mouth open upward. A strong earth-

quake in any direction would tilt the pendulum in that direction, triggering the lever in the

dragon head. This opened the mouth of the dragon, thereby releasing its bronze ball,

which fell in the mouth of the toad with a clanging sound. Thus the seismograph enabled

the monitoring personnel to know both the time and direction of occurrence of the earth-

quake.

FIGURE 1.4 The world s first seismograph,
invented in China in A.D. 132. (Reprinted with 

permission from R. Taton (ed.), History of Science,

Basic Books, Inc., New York, 1957.)
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Galileo Galilei (1564 1642) is considered to be the founder of modern experimental sci-

ence. In fact, the seventeenth century is often considered the century of genius  since the

foundations of modern philosophy and science were laid during that period. Galileo was

inspired to study the behavior of a simple pendulum by observing the pendulum move-

ments of a lamp in a church in Pisa. One day, while feeling bored during a sermon, Galileo

was staring at the ceiling of the church. A swinging lamp caught his attention. He started

measuring the period of the pendulum movements of the lamp with his pulse and found to

his amazement that the time period was independent of the amplitude of swings. This led

him to conduct more experiments on the simple pendulum. In Discourses Concerning Two

New Sciences, published in 1638, Galileo discussed vibrating bodies. He described the

dependence of the frequency of vibration on the length of a simple pendulum, along with

the phenomenon of sympathetic vibrations (resonance). Galileo s writings also indicate

that he had a clear understanding of the relationship between the frequency, length, ten-

sion, and density of a vibrating stretched string [1.5]. However, the first correct published

account of the vibration of strings was given by the French mathematician and theologian,

Marin Mersenne (1588 1648) in his book Harmonicorum Liber, published in 1636.

Mersenne also measured, for the first time, the frequency of vibration of a long string and

from that predicted the frequency of a shorter string having the same density and tension.

Mersenne is considered by many the father of acoustics. He is often credited with the dis-

covery of the laws of vibrating strings because he published the results in 1636, two years

before Galileo. However, the credit belongs to Galileo, since the laws were written many

years earlier but their publication was prohibited by the orders of the Inquisitor of Rome

until 1638.

Inspired by the work of Galileo, the Academia del Cimento was founded in Florence

in 1657; this was followed by the formations of the Royal Society of London in 1662 and

the Paris Academie des Sciences in 1666. Later, Robert Hooke (1635 1703) also con-

ducted experiments to find a relation between the pitch and frequency of vibration of a

string. However, it was Joseph Sauveur (1653 1716) who investigated these experiments

thoroughly and coined the word acoustics  for the science of sound [1.6]. Sauveur in

France and John Wallis (1616 1703) in England observed, independently, the phenome-

non of mode shapes, and they found that a vibrating stretched string can have no motion

at certain points and violent motion at intermediate points. Sauveur called the former

points nodes and the latter ones loops. It was found that such vibrations had higher fre-

quencies than that associated with the simple vibration of the string with no nodes. In fact,

the higher frequencies were found to be integral multiples of the frequency of simple

vibration, and Sauveur called the higher frequencies harmonics and the frequency of sim-

ple vibration the fundamental frequency. Sauveur also found that a string can vibrate with

several of its harmonics present at the same time. In addition, he observed the phenome-

non of beats when two organ pipes of slightly different pitches are sounded together. In

1700 Sauveur calculated, by a somewhat dubious method, the frequency of a stretched

string from the measured sag of its middle point.

Sir Isaac Newton (1642 1727) published his monumental work, Philosophiae

Naturalis Principia Mathematica, in 1686, describing the law of universal gravitation as

well as the three laws of motion and other discoveries. Newton s second law of motion is

routinely used in modern books on vibrations to derive the equations of motion of a

1.2.2
From Galileo 
to Rayleigh
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vibrating body. The theoretical (dynamical) solution of the problem of the vibrating string

was found in 1713 by the English mathematician Brook Taylor (1685 1731), who also

presented the famous Taylor s theorem on infinite series. The natural frequency of vibra-

tion obtained from the equation of motion derived by Taylor agreed with the experimen-

tal values observed by Galileo and Mersenne. The procedure adopted by Taylor was

perfected through the introduction of partial derivatives in the equations of motion by

Daniel Bernoulli (1700 1782), Jean D Alembert (1717 1783), and Leonard Euler

(1707 1783).

The possibility of a string vibrating with several of its harmonics present at the same

time (with displacement of any point at any instant being equal to the algebraic sum of dis-

placements for each harmonic) was proved through the dynamic equations of Daniel

Bernoulli in his memoir, published by the Berlin Academy in 1755 [1.7]. This character-

istic was referred to as the principle of the coexistence of small oscillations, which, in

present-day terminology, is the principle of superposition. This principle was proved to be

most valuable in the development of the theory of vibrations and led to the possibility of

expressing any arbitrary function (i.e., any initial shape of the string) using an infinite

series of sines and cosines. Because of this implication, D Alembert and Euler doubted the

validity of this principle. However, the validity of this type of expansion was proved by J.

B. J. Fourier (1768 1830) in his Analytical Theory of Heat in 1822.

The analytical solution of the vibrating string was presented by Joseph Lagrange

(1736 1813) in his memoir published by the Turin Academy in 1759. In his study,

Lagrange assumed that the string was made up of a finite number of equally spaced iden-

tical mass particles, and he established the existence of a number of independent frequen-

cies equal to the number of mass particles. When the number of particles was allowed to

be infinite, the resulting frequencies were found to be the same as the harmonic frequen-

cies of the stretched string. The method of setting up the differential equation of the motion

of a string (called the wave equation), presented in most modern books on vibration the-

ory, was first developed by D Alembert in his memoir published by the Berlin Academy

in 1750. The vibration of thin beams supported and clamped in different ways was first

studied by Euler in 1744 and Daniel Bernoulli in 1751. Their approach has become known

as the Euler-Bernoulli or thin beam theory.

Charles Coulomb did both theoretical and experimental studies in 1784 on the tor-

sional oscillations of a metal cylinder suspended by a wire (Fig. 1.5). By assuming that

the resisting torque of the twisted wire is proportional to the angle of twist, he derived the

equation of motion for the torsional vibration of the suspended cylinder. By integrating

the equation of motion, he found that the period of oscillation is independent of the angle

of twist.

There is an interesting story related to the development of the theory of vibration of

plates [1.8]. In 1802 the German scientist, E. F. F. Chladni (1756 1824) developed the

method of placing sand on a vibrating plate to find its mode shapes and observed the

beauty and intricacy of the modal patterns of the vibrating plates. In 1809 the French

Academy invited Chladni to give a demonstration of his experiments. Napoléon

Bonaparte, who attended the meeting, was very impressed and presented a sum of 3,000

francs to the academy, to be awarded to the first person to give a satisfactory mathemati-

cal theory of the vibration of plates. By the closing date of the competition in October
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1811, only one candidate, Sophie Germain, had entered the contest. But Lagrange, who

was one of the judges, noticed an error in the derivation of her differential equation of

motion. The academy opened the competition again, with a new closing date of October

1813. Sophie Germain again entered the contest, presenting the correct form of the differ-

ential equation. However, the academy did not award the prize to her because the judges

wanted physical justification of the assumptions made in her derivation. The competition

was opened once more. In her third attempt, Sophie Germain was finally awarded the prize

in 1815, although the judges were not completely satisfied with her theory. In fact, it was

later found that her differential equation was correct but the boundary conditions were

erroneous. The correct boundary conditions for the vibration of plates were given in 1850

by G. R. Kirchhoff (1824 1887).

In the meantime, the problem of vibration of a rectangular flexible membrane, which

is important for the understanding of the sound emitted by drums, was solved for the first

time by Simeon Poisson (1781 1840). The vibration of a circular membrane was studied

by R. F. A. Clebsch (1833 1872) in 1862. After this, vibration studies were done on a

number of practical mechanical and structural systems. In 1877 Lord Baron Rayleigh pub-

lished his book on the theory of sound [1.9]; it is considered a classic on the subject of

sound and vibration even today. Notable among the many contributions of Rayleigh is the

method of finding the fundamental frequency of vibration of a conservative system by

making use of the principle of conservation of energy now known as Rayleigh s method.
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FIGURE 1.5 Coulomb s device for tor-
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sion from S. P. Timoshenko, History of Strength

of Materials, McGraw-Hill Book Company, Inc.,

New York, 1953.)
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1.2.3

Recent

Contributions

In 1902 Frahm investigated the importance of torsional vibration study in the design of the

propeller shafts of steamships. The dynamic vibration absorber, which involves the addition

of a secondary spring-mass system to eliminate the vibrations of a main system, was also pro-

posed by Frahm in 1909. Among the modern contributers to the theory of vibrations, the

names of Stodola, De Laval, Timoshenko, and Mindlin are notable. Aurel Stodola

(1859 1943) contributed to the study of vibration of beams, plates, and membranes. He devel-

oped a method for analyzing vibrating beams that is also applicable to turbine blades. Noting

that every major type of prime mover gives rise to vibration problems, C. G. P. De Laval

(1845 1913) presented a practical solution to the problem of vibration of an unbalanced rotat-

ing disk. After noticing failures of steel shafts in high-speed turbines, he used a bamboo fish-

ing rod as a shaft to mount the rotor. He observed that this system not only eliminated the

vibration of the unbalanced rotor but also survived up to speeds as high as 100,000 rpm [1.10].

Stephen Timoshenko (1878 1972), by considering the effects of rotary inertia and

shear deformation, presented an improved theory of vibration of beams, which has

become known as the Timoshenko or thick beam theory. A similar theory was presented

by R. D. Mindlin for the vibration analysis of thick plates by including the effects of

rotary inertia and shear deformation.

It has long been recognized that many basic problems of mechanics, including those

of vibrations, are nonlinear. Although the linear treatments commonly adopted are quite

satisfactory for most purposes, they are not adequate in all cases. In nonlinear systems,

phenonmena may occur that are theoretically impossible in linear systems. The mathe-

matical theory of nonlinear vibrations began to develop in the works of Poincaré and

Lyapunov at the end of the nineteenth century. Poincaré developed the perturbation

method in 1892 in connection with the approximate solution of nonlinear celestial

mechanics problems. In 1892, Lyapunov laid the foundations of modern stability theory,

which is applicable to all types of dynamical systems. After 1920, the studies undertaken

by Duffing and van der Pol brought the first definite solutions into the theory of nonlinear

vibrations and drew attention to its importance in engineering. In the last 40 years, authors

like Minorsky and Stoker have endeavored to collect in monographs the main results con-

cerning nonlinear vibrations. Most practical applications of nonlinear vibration involved

the use of some type of a perturbation-theory approach. The modern methods of perturba-

tion theory were surveyed by Nayfeh [1.11].

Random characteristics are present in diverse phenomena such as earthquakes,

winds, transportation of goods on wheeled vehicles, and rocket and jet engine noise. It

became necessary to devise concepts and methods of vibration analysis for these random

effects. Although Einstein considered Brownian movement, a particular type of random

vibration, as long ago as 1905, no applications were investigated until 1930. The intro-

duction of the correlation function by Taylor in 1920 and of the spectral density by

Wiener and Khinchin in the early 1930s opened new prospects for progress in the theory

of random vibrations. Papers by Lin and Rice, published between 1943 and 1945, paved

This method proved to be a helpful technique for the solution of difficult vibration prob-

lems. An extension of the method, which can be used to find multiple natural frequencies,

is known as the Rayleigh-Ritz method.



10 CHAPTER 1 FUNDAMENTALS OF VIBRATION

FIGURE 1.6 Finite element idealization of the body of a bus [1.16]. (Reprinted with permission © 1974 Society of

Automotive Engineers, Inc.)

the way for the application of random vibrations to practical engineering problems. The

monographs of Crandall and Mark and of Robson systematized the existing knowledge in

the theory of random vibrations [1.12, 1.13].

Until about 40 years ago, vibration studies, even those dealing with complex engineering

systems, were done by using gross models, with only a few degrees of freedom. However, the

advent of high-speed digital computers in the 1950s made it possible to treat moderately com-

plex systems and to generate approximate solutions in semidefinite form, relying on classical

solution methods but using numerical evaluation of certain terms that cannot be expressed in

closed form. The simultaneous development of the finite element method enabled engineers

to use digital computers to conduct numerically detailed vibration analysis of complex

mechanical, vehicular, and structural systems displaying thousands of degrees of freedom

[1.14]. Although the finite element method was not so named until recently, the concept was

used centuries ago. For example, ancient mathematicians found the circumference of a circle

by approximating it as a polygon, where each side of the polygon, in present-day notation, can

be called a finite element. The finite element method as known today was presented by Turner,

Clough, Martin, and Topp in connection with the analysis of aircraft structures [1.15]. Figure

1.6 shows the finite element idealization of the body of a bus [1.16].

1.3 Importance of the Study of Vibration
Most human activities involve vibration in one form or other. For example, we hear

because our eardrums vibrate and see because light waves undergo vibration. Breathing is

associated with the vibration of lungs and walking involves (periodic) oscillatory motion

of legs and hands. Human speech requires the oscillatory motion of larynges (and tongues)

[1.17]. Early scholars in the field of vibration concentrated their efforts on understand-

ing the natural phenomena and developing mathematical theories to describe the vibration

of physical systems. In recent times, many investigations have been motivated by the
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engineering applications of vibration, such as the design of machines, foundations, struc-

tures, engines, turbines, and control systems.

Most prime movers have vibrational problems due to the inherent unbalance in the

engines. The unbalance may be due to faulty design or poor manufacture. Imbalance in

diesel engines, for example, can cause ground waves sufficiently powerful to create a nui-

sance in urban areas. The wheels of some locomotives can rise more than a centimeter off

the track at high speeds due to imbalance. In turbines, vibrations cause spectacular mechan-

ical failures. Engineers have not yet been able to prevent the failures that result from blade

and disk vibrations in turbines. Naturally, the structures designed to support heavy cen-

trifugal machines, like motors and turbines, or reciprocating machines, like steam and gas

engines and reciprocating pumps, are also subjected to vibration. In all these situations, the

structure or machine component subjected to vibration can fail because of material fatigue

resulting from the cyclic variation of the induced stress. Furthermore, the vibration causes

more rapid wear of machine parts such as bearings and gears and also creates excessive

noise. In machines, vibration can loosen fasteners such as nuts. In metal cutting processes,

vibration can cause chatter, which leads to a poor surface finish.

Whenever the natural frequency of vibration of a machine or structure coincides with

the frequency of the external excitation, there occurs a phenomenon known as resonance,

which leads to excessive deflections and failure. The literature is full of accounts of sys-

tem failures brought about by resonance and excessive vibration of components and sys-

tems (see Fig. 1.7). Because of the devastating effects that vibrations can have on machines

FIGURE 1.7 Tacoma Narrows bridge during wind-induced vibration. The bridge opened on
July 1, 1940, and collapsed on November 7, 1940. (Farquharson photo, Historical Photography

Collection, University of Washington Libraries.)
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FIGURE 1.8 Vibration testing of the space shuttle Enterprise. (Courtesy of

NASA.)

FIGURE 1.9 Vibratory finishing process. (Reprinted courtesy of the Society of Manufacturing Engineers, © 1964 The

Tool and Manufacturing Engineer.)

and structures, vibration testing [1.18] has become a standard procedure in the design and

development of most engineering systems (see Fig. 1.8).

In many engineering systems, a human being acts as an integral part of the system.

The transmission of vibration to human beings results in discomfort and loss of efficiency.

The vibration and noise generated by engines causes annoyance to people and, sometimes,

damage to property. Vibration of instrument panels can cause their malfunction or diffi-

culty in reading the meters [1.19]. Thus one of the important purposes of vibration study

is to reduce vibration through proper design of machines and their mountings. In this
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connection, the mechanical engineer tries to design the engine or machine so as to mini-

mize imbalance, while the structural engineer tries to design the supporting structure so as

to ensure that the effect of the imbalance will not be harmful [1.20].

In spite of its detrimental effects, vibration can be utilized profitably in several consumer

and industrial applications. In fact, the applications of vibratory equipment have increased

considerably in recent years [1.21]. For example, vibration is put to work in vibratory con-

veyors, hoppers, sieves, compactors, washing machines, electric toothbrushes, dentist s

drills, clocks, and electric massaging units. Vibration is also used in pile driving, vibratory

testing of materials, vibratory finishing processes, and electronic circuits to filter out the

unwanted frequencies (see Fig. 1.9). Vibration has been found to improve the efficiency of

certain machining, casting, forging, and welding processes. It is employed to simulate earth-

quakes for geological research and also to conduct studies in the design of nuclear reactors.

1.4 Basic Concepts of Vibration

1.4.1
Vibration

Any motion that repeats itself after an interval of time is called vibration or oscillation.

The swinging of a pendulum and the motion of a plucked string are typical examples of

vibration. The theory of vibration deals with the study of oscillatory motions of bodies and

the forces associated with them.

1.4.2
Elementary Parts
of Vibrating
Systems

A vibratory system, in general, includes a means for storing potential energy (spring or

elasticity), a means for storing kinetic energy (mass or inertia), and a means by which

energy is gradually lost (damper).

The vibration of a system involves the transfer of its potential energy to kinetic energy

and of kinetic energy to potential energy, alternately. If the system is damped, some energy

is dissipated in each cycle of vibration and must be replaced by an external source if a state

of steady vibration is to be maintained.

As an example, consider the vibration of the simple pendulum shown in Fig. 1.10. Let

the bob of mass m be released after being given an angular displacement At position 1

the velocity of the bob and hence its kinetic energy is zero. But it has a potential energy of

magnitude with respect to the datum position 2. Since the gravitational

force mg induces a torque about the point O, the bob starts swinging to the left

from position 1. This gives the bob certain angular acceleration in the clockwise direction,

and by the time it reaches position 2, all of its potential energy will be converted into

kinetic energy. Hence the bob will not stop in position 2 but will continue to swing to posi-

tion 3. However, as it passes the mean position 2, a counterclockwise torque due to grav-

ity starts acting on the bob and causes the bob to decelerate. The velocity of the bob

reduces to zero at the left extreme position. By this time, all the kinetic energy of the bob

will be converted to potential energy. Again due to the gravity torque, the bob continues to

attain a counterclockwise velocity. Hence the bob starts swinging back with progressively

increasing velocity and passes the mean position again. This process keeps repeating, and

the pendulum will have oscillatory motion. However, in practice, the magnitude of oscil-

lation gradually decreases and the pendulum ultimately stops due to the resistance

(damping) offered by the surrounding medium (air). This means that some energy is dis-

sipated in each cycle of vibration due to damping by the air.

(u)

mgl sin u
mgl(1 - cos u)

u.
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FIGURE 1.11 Single-degree-of-freedom systems.

1.4.3
Number of
Degrees 
of Freedom

The minimum number of independent coordinates required to determine completely the

positions of all parts of a system at any instant of time defines the number of degrees of free-

dom of the system. The simple pendulum shown in Fig. 1.10, as well as each of the systems

shown in Fig. 1.11, represents a single-degree-of-freedom system. For example, the motion

of the simple pendulum (Fig. 1.10) can be stated either in terms of the angle or in terms

of the Cartesian coordinates x and y. If the coordinates x and y are used to describe the

motion, it must be recognized that these coordinates are not independent. They are related

to each other through the relation where l is the constant length of the pen-

dulum. Thus any one coordinate can describe the motion of the pendulum. In this example,

we find that the choice of as the independent coordinate will be more convenient than the

choice of x or y. For the slider shown in Fig. 1.11(a), either the angular coordinate or the

coordinate x can be used to describe the motion. In Fig. 1.11(b), the linear coordinate x can

u

u

x2
+ y2

= l2,

u

O

3 1
m

2

l

Datum

x

mg

y

l (1  cos u)

u

FIGURE 1.10 A simple pendulum.
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FIGURE 1.12 Two-degree-of-freedom systems.

be used to specify the motion. For the torsional system (long bar with a heavy disk at the

end) shown in Fig. 1.11(c), the angular coordinate can be used to describe the motion.

Some examples of two- and three-degree-of-freedom systems are shown in Figs. 1.12

and 1.13, respectively. Figure 1.12(a) shows a two-mass, two-spring system that is described

by the two linear coordinates and Figure 1.12(b) denotes a two-rotor system whose

motion can be specified in terms of and The motion of the system shown in Fig. 1.12(c)

can be described completely either by X and or by x, y, and X. In the latter case, x and y are

constrained as where l is a constant.

For the systems shown in Figs. 1.13(a) and 1.13(c), the coordinates 

and can be used, respectively, to describe the motion. In the case of theui (i = 1, 2, 3)
xi (i = 1, 2, 3)
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FIGURE 1.13 Three degree-of-freedom systems.
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x1
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x3

etc.

FIGURE 1.14 A cantilever beam
(an infinite-number-of-degrees-of-freedom 

system).

system shown in Fig. 1.13(b), specifies the positions of the masses

An alternate method of describing this system is in terms of and 

but in this case the constraints have to be

considered.

The coordinates necessary to describe the motion of a system constitute a set of

generalized coordinates. These are usually denoted as and may represent

Cartesian and/or non-Cartesian coordinates.

q1, q2, Á

xi
2
+ yi

2
= li

2 (i = 1, 2, 3)yi (i = 1, 2, 3);
ximi (i = 1, 2, 3).

ui (i = 1, 2, 3)

1.4.4
Discrete and
Continuous
Systems

A large number of practical systems can be described using a finite number of degrees of

freedom, such as the simple systems shown in Figs. 1.10 to 1.13. Some systems, especially

those involving continuous elastic members, have an infinite number of degrees of free-

dom. As a simple example, consider the cantilever beam shown in Fig. 1.14. Since the

beam has an infinite number of mass points, we need an infinite number of coordinates to

specify its deflected configuration. The infinite number of coordinates defines its elastic

deflection curve. Thus the cantilever beam has an infinite number of degrees of freedom.

Most structural and machine systems have deformable (elastic) members and therefore

have an infinite number of degrees of freedom.

Systems with a finite number of degrees of freedom are called discrete or lumped

parameter systems, and those with an infinite number of degrees of freedom are called

continuous or distributed systems.

Most of the time, continuous systems are approximated as discrete systems, and solutions

are obtained in a simpler manner. Although treatment of a system as continuous gives exact

results, the analytical methods available for dealing with continuous systems are limited to a

narrow selection of problems, such as uniform beams, slender rods, and thin plates. Hence

most of the practical systems are studied by treating them as finite lumped masses, springs,

and dampers. In general, more accurate results are obtained by increasing the number of

masses, springs, and dampers that is, by increasing the number of degrees of freedom.

1.5 Classification of Vibration
Vibration can be classified in several ways. Some of the important classifications are as

follows.
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1.5.1
Free and Forced
Vibration

Free Vibration. If a system, after an initial disturbance, is left to vibrate on its own, the

ensuing vibration is known as free vibration. No external force acts on the system. The

oscillation of a simple pendulum is an example of free vibration.

Forced Vibration. If a system is subjected to an external force (often, a repeating type

of force), the resulting vibration is known as forced vibration. The oscillation that arises in

machines such as diesel engines is an example of forced vibration.

If the frequency of the external force coincides with one of the natural frequencies of

the system, a condition known as resonance occurs, and the system undergoes dangerously

large oscillations. Failures of such structures as buildings, bridges, turbines, and airplane

wings have been associated with the occurrence of resonance.

1.5.2
Undamped 
and Damped
Vibration

If no energy is lost or dissipated in friction or other resistance during oscillation, the vibra-

tion is known as undamped vibration. If any energy is lost in this way, however, it is called

damped vibration. In many physical systems, the amount of damping is so small that it can

be disregarded for most engineering purposes. However, consideration of damping

becomes extremely important in analyzing vibratory systems near resonance.

1.5.3
Linear 
and Nonlinear
Vibration

If all the basic components of a vibratory system the spring, the mass, and the damper

behave linearly, the resulting vibration is known as linear vibration. If, however, any of the

basic components behave nonlinearly, the vibration is called nonlinear vibration. The dif-

ferential equations that govern the behavior of linear and nonlinear vibratory systems are

linear and nonlinear, respectively. If the vibration is linear, the principle of superposition

holds, and the mathematical techniques of analysis are well developed. For nonlinear

vibration, the superposition principle is not valid, and techniques of analysis are less well

known. Since all vibratory systems tend to behave nonlinearly with increasing amplitude

of oscillation, a knowledge of nonlinear vibration is desirable in dealing with practical

vibratory systems.

If the value or magnitude of the excitation (force or motion) acting on a vibratory system

is known at any given time, the excitation is called deterministic. The resulting vibration

is known as deterministic vibration.

1.5.4
Deterministic
and Random
Vibration In some cases, the excitation is nondeterministic or random; the value of the exci-

tation at a given time cannot be predicted. In these cases, a large collection of records

of the excitation may exhibit some statistical regularity. It is possible to estimate aver-

ages such as the mean and mean square values of the excitation. Examples of random

excitations are wind velocity, road roughness, and ground motion during earthquakes.

If the excitation is random, the resulting vibration is called random vibration. In this

case the vibratory response of the system is also random; it can be described only in

terms of statistical quantities. Figure 1.15 shows examples of deterministic and random

excitations.
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FIGURE 1.15 Deterministic and random excitations.

1.6 Vibration Analysis Procedure
A vibratory system is a dynamic one for which the variables such as the excitations

(inputs) and responses (outputs) are time dependent. The response of a vibrating system

generally depends on the initial conditions as well as the external excitations. Most prac-

tical vibrating systems are very complex, and it is impossible to consider all the details for

a mathematical analysis. Only the most important features are considered in the analysis

to predict the behavior of the system under specified input conditions. Often the overall

behavior of the system can be determined by considering even a simple model of the com-

plex physical system. Thus the analysis of a vibrating system usually involves mathemat-

ical modeling, derivation of the governing equations, solution of the equations, and

interpretation of the results.

Step 1: Mathematical Modeling. The purpose of mathematical modeling is to represent

all the important features of the system for the purpose of deriving the mathematical (or

analytical) equations governing the system s behavior. The mathematical model should

include enough details to allow describing the system in terms of equations without mak-

ing it too complex. The mathematical model may be linear or nonlinear, depending on the

behavior of the system s components. Linear models permit quick solutions and are sim-

ple to handle; however, nonlinear models sometimes reveal certain characteristics of the

system that cannot be predicted using linear models. Thus a great deal of engineering judg-

ment is needed to come up with a suitable mathematical model of a vibrating system.

Sometimes the mathematical model is gradually improved to obtain more accurate

results. In this approach, first a very crude or elementary model is used to get a quick

insight into the overall behavior of the system. Subsequently, the model is refined by

including more components and/or details so that the behavior of the system can be

observed more closely. To illustrate the procedure of refinement used in mathematical

modeling, consider the forging hammer shown in Fig. 1.16(a). It consists of a frame, a

falling weight known as the tup, an anvil, and a foundation block. The anvil is a massive

steel block on which material is forged into desired shape by the repeated blows of the tup.

The anvil is usually mounted on an elastic pad to reduce the transmission of vibration to

the foundation block and the frame [1.22]. For a first approximation, the frame, anvil, elas-

tic pad, foundation block, and soil are modeled as a single degree of freedom system as

shown in Fig. 1.16(b). For a refined approximation, the weights of the frame and anvil and
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FIGURE 1.16 Modeling of a forging hammer.
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the foundation block are represented separately with a two-degree-of-freedom model as

shown in Fig. 1.16(c). Further refinement of the model can be made by considering

eccentric impacts of the tup, which cause each of the masses shown in Fig. 1.16(c) to

have both vertical and rocking (rotation) motions in the plane of the paper.

Step 2: Derivation of Governing Equations. Once the mathematical model is avail-

able, we use the principles of dynamics and derive the equations that describe the vibra-

tion of the system. The equations of motion can be derived conveniently by drawing the

free-body diagrams of all the masses involved. The free-body diagram of a mass can be

obtained by isolating the mass and indicating all externally applied forces, the reactive

forces, and the inertia forces. The equations of motion of a vibrating system are usually in

the form of a set of ordinary differential equations for a discrete system and partial differ-

ential equations for a continuous system. The equations may be linear or nonlinear,

depending on the behavior of the components of the system. Several approaches are com-

monly used to derive the governing equations. Among them are Newton s second law of

motion, D Alembert s principle, and the principle of conservation of energy.

Step 3: Solution of the Governing Equations. The equations of motion must be solved

to find the response of the vibrating system. Depending on the nature of the problem, we

can use one of the following techniques for finding the solution: standard methods of solv-

ing differential equations, Laplace transform methods, matrix methods,1 and numerical

methods. If the governing equations are nonlinear, they can seldom be solved in closed

form. Furthermore, the solution of partial differential equations is far more involved than

that of ordinary differential equations. Numerical methods involving computers can be

used to solve the equations. However, it will be difficult to draw general conclusions about

the behavior of the system using computer results.

Step 4: Interpretation of the Results. The solution of the governing equations gives the

displacements, velocities, and accelerations of the various masses of the system. These

results must be interpreted with a clear view of the purpose of the analysis and the possi-

ble design implications of the results.

E X A M P L E  1 . 1
Mathematical Model of a Motorcycle

Figure 1.17(a) shows a motorcycle with a rider. Develop a sequence of three mathematical models

of the system for investigating vibration in the vertical direction. Consider the elasticity of the tires,

elasticity and damping of the struts (in the vertical direction), masses of the wheels, and elasticity,

damping, and mass of the rider.

Solution: We start with the simplest model and refine it gradually. When the equivalent values of

the mass, stiffness, and damping of the system are used, we obtain a single-degree-of-freedom model

1The basic definitions and operations of matrix theory are given in Appendix A.



1.6 VIBRATION ANALYSIS PROCEDURE 21

of the motorcycle with a rider as indicated in Fig. 1.17(b). In this model, the equivalent stiffness

includes the stiffnesses of the tires, struts, and rider. The equivalent damping constant 

includes the damping of the struts and the rider. The equivalent mass includes the masses of the

wheels, vehicle body, and the rider. This model can be refined by representing the masses of wheels,
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FIGURE 1.17 Motorcycle with a rider a physical system and
mathematical model.
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FIGURE 1.18 Deformation of a spring.

elasticity of the tires, and elasticity and damping of the struts separately, as shown in Fig. 1.17(c). In

this model, the mass of the vehicle body and the mass of the rider are shown as a single

mass, When the elasticity (as spring constant ) and damping (as damping constant )

of the rider are considered, the refined model shown in Fig. 1.17(d) can be obtained.

Note that the models shown in Figs. 1.17(b) to (d) are not unique. For example, by combining the

spring constants of both tires, the masses of both wheels, and the spring and damping constants of both

struts as single quantities, the model shown in Fig. 1.17(e) can be obtained instead of Fig. 1.17(c).

*

1.7 Spring Elements
A spring is a type of mechanical link, which in most applications is assumed to have negli-

gible mass and damping. The most common type of spring is the helical-coil spring used in

retractable pens and pencils, staplers, and suspensions of freight trucks and other vehicles.

Several other types of springs can be identified in engineering applications. In fact, any elas-

tic or deformable body or member, such as a cable, bar, beam, shaft or plate, can be con-

sidered as a spring. A spring is commonly represented as shown in Fig. 1.18(a). If the free

length of the spring, with no forces acting, is denoted l, it undergoes a change in length

when an axial force is applied. For example, when a tensile force F is applied at its free end

2, the spring undergoes an elongation x as shown in Fig. 1.18(b), while a compressive force

F applied at the free end 2 causes a reduction in length x as shown in Fig. 1.18(c).

A spring is said to be linear if the elongation or reduction in length x is related to the

applied force F as

(1.1)

where k is a constant, known as the spring constant or spring stiffness or spring rate. The

spring constant k is always positive and denotes the force (positive or negative) required to

F = kx

crkrmv + mr.
(mr)(mv)
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cause a unit deflection (elongation or reduction in length) in the spring. When the spring

is stretched (or compressed) under a tensile (or compressive) force F, according to

Newton s third law of motion, a restoring force or reaction of magnitude is

developed opposite to the applied force. This restoring force tries to bring the stretched (or

compressed) spring back to its original unstretched or free length as shown in Fig. 1.18(b)

(or 1.18(c)). If we plot a graph between F and x, the result is a straight line according to

Eq. (1.1). The work done (U) in deforming a spring is stored as strain or potential energy

in the spring, and it is given by

(1.2)U =
1

2
 kx2

-  F(or +F)

1.7.1
Nonlinear
Springs

Most springs used in practical systems exhibit a nonlinear force-deflection relation, par-

ticularly when the deflections are large. If a nonlinear spring undergoes small deflections,

it can be replaced by a linear spring by using the procedure discussed in Section 1.7.2. In

vibration analysis, nonlinear springs whose force-deflection relations are given by

(1.3)

are commonly used. In Eq. (1.3), a denotes the constant associated with the linear part and

b indicates the constant associated with the (cubic) nonlinearity. The spring is said to be

hard if linear if and soft if The force-deflection relations for vari-

ous values of b are shown in Fig. 1.19.

b 6 0.b = 0,b 7 0,

F = ax + bx3;   a 7 0

Force (F)

Linear spring (b * 0)

Soft spring (b + 0)

Hard spring (b , 0)

Deflection (x)
O

FIGURE 1.19 Nonlinear and linear springs.
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Displacement (x)

Spring force (F)

O

O

c1
c2

k2

k1

k1 k2

c1

W

c2

k2(x * c2)

k1(x * c1)

(a)

(b)

+x

FIGURE 1.20 Nonlinear spring force-displacement relation.

Some systems, involving two or more springs, may exhibit a nonlinear force-dis-

placement relationship although the individual springs are linear. Some examples of such

systems are shown in Figs. 1.20 and 1.21. In Fig. 1.20(a), the weight (or force) W travels

F

c

x

Spring force (F)
Weightless
rigid bar

x , 0 corresponds to position
of the bar with no force

Displacement
of force

x

O

O

c

k2

F , k1x + k2(x * c)F , k1x

(b)(a)

k1

2

k1

2

FIGURE 1.21 Nonlinear spring force-displacement relation.
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freely through the clearances and present in the system. Once the weight comes into

contact with a particular spring, after passing through the corresponding clearance, the

spring force increases in proportion to the spring constant of the particular spring (see Fig.

1.20(b)). It can be seen that the resulting force-displacement relation, although piecewise

linear, denotes a nonlinear relationship.

In Fig. 1.21(a), the two springs, with stiffnesses and have different lengths. Note

that the spring with stiffness is shown, for simplicity, in the form of two parallel springs,

each with a stiffness of Spring arrangement models of this type can be used in the

vibration analysis of packages and suspensions used in aircraft landing gears.

When the spring deflects by an amount the second spring starts providing

an additional stiffness to the system. The resulting nonlinear force-displacement rela-

tionship is shown in Fig. 1.21(b).

k2

x = c,k1

k 1/2.
k 1

k2,k1

c2c1

1.7.2
Linearization 
of a Nonlinear
Spring

Actual springs are nonlinear and follow Eq. (1.1) only up to a certain deformation. Beyond

a certain value of deformation (after point A in Fig. 1.22), the stress exceeds the yield point

of the material and the force-deformation relation becomes nonlinear [1.23, 1.24]. In many

practical applications we assume that the deflections are small and make use of the linear

relation in Eq. (1.1). Even, if the force-deflection relation of a spring is nonlinear, as shown

in Fig. 1.23, we often approximate it as a linear one by using a linearization process [1.24,

1.25]. To illustrate the linearization process, let the static equilibrium load F acting on the

spring cause a deflection of If an incremental force is added to F, the spring

deflects by an additional quantity The new spring force can be expressed

using Taylor s series expansion about the static equilibrium position as

(1.4)

For small values of the higher-order derivative terms can be neglected to obtain

(1.5)F + ¢F = F(x*) +
dF

dx
`
x*

 (¢x)

¢x,

 = F(x*) +
dF

dx
`
x*

 (¢x) +
1

2!
 
d2F

dx2 `
x*

 (¢x)2
+ Á

F + ¢F = F(x* + ¢x)

x*

F + ¢F¢x.
¢Fx*.

Stress

Strain

Yield
point, A

Force (F )

Deformation (x)

Yield
point, A

x + x1 * x2

x2 x1

FIGURE 1.22 Nonlinearity beyond proportionality limit.
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F * ,F + F(x* * ,x)

F + F(x*)

F + F(x)

x* * ,xx*

Force (F )

Deformation (x)

k +
dF

dx
x*

FIGURE 1.23 Linearization process.

E X A M P L E  1 . 2
Equivalent Linearized Spring Constant

A precision milling machine, weighing 1000 lb, is supported on a rubber mount. The force-deflec-

tion relationship of the rubber mount is given by

(E.1)

where the force (F) and the deflection (x) are measured in pounds and inches, respectively. Determine

the equivalent linearized spring constant of the rubber mount at its static equilibrium position.

Solution: The static equilibrium position of the rubber mount under the weight of the milling

machine, can be determined from Eq. (E.1):

or

(E.2)200(x*)3 + 2000x* - 1000 = 0

1000 = 2000x* + 200(x*)3

(x*),

F = 2000x + 200x3

Since we can express as

(1.6)

where k is the linearized spring constant at given by

(1.7)

We may use Eq. (1.6) for simplicity, but sometimes the error involved in the approxima-

tion may be very large.

k =
dF

dx
`
x*

x*

¢F = k ¢x

¢FF = F(x*),
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The roots of the cubic equation, (E.2), can be found (for example, using the function roots in

MATLAB) as

The static equilibrium position of the rubber mount is given by the real root of Eq. (E.2):

The equivalent linear spring constant of the rubber mount at its static equilibrium

position can be determined using Eq. (1.7):

Note: The equivalent linear spring constant, predicts the static deflection of

the milling machine as

which is slightly different from the true value of 0.4884 in. The error is due to the truncation of the

higher-order derivative terms in Eq. (1.4).

*

x =
F

keq

=
1000

2143.1207
= 0.4666 in.

keq = 2143.1207 lb/in.,

keq =
dF

dx
`
x*

= 2000 + 600(x*)2
= 2000 + 600(0.48842) = 2143.1207 lb/in.

x* = 0.4884 in.

x* = 0.4884, -0.2442 + 3.1904i, and -0.2442  -   3.1904i

1.7.3
Spring
Constants 
of Elastic
Elements

As stated earlier, any elastic or deformable member (or element) can be considered as a

spring. The equivalent spring constants of simple elastic members such as rods, beams,

and hollow shafts are given on the inside front cover of the book. The procedure of find-

ing the equivalent spring constant of elastic members is illustrated through the following

examples.

E X A M P L E  1 . 3
Spring Constant of a Rod

Find the equivalent spring constant of a uniform rod of length l, cross-sectional area A, and Young s

modulus E subjected to an axial tensile (or compressive) force F as shown in Fig. 1.24(a).

l

F

(a)

(b)

F

d

d

AE

l
k *

FIGURE 1.24 Spring constant of a rod.
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E X A M P L E  1 . 4
Spring Constant of a Cantilever Beam

Find the equivalent spring constant of a cantilever beam subjected to a concentrated load F at its end

as shown in Fig. 1.25(a).

Solution: We assume, for simplicity, that the self weight (or mass) of the beam is negligible and the

concentrated load F is due to the weight of a point mass From strength of materials

[1.26], we know that the end deflection of the beam due to a concentrated load is given by

(E.1)

where E is the Young s modulus and I is the moment of inertia of the cross section of the beam about

the bending or z-axis (i.e., axis perpendicular to the page). Hence the spring constant of the beam is

(Fig. 1.25(b)):

(E.2)k =

W

d
=

3EI

l3

d =

Wl3

3EI

F = W

(W = mg).

Solution: The elongation (or shortening) of the rod under the axial tensile (or compressive) force

F can be expressed as

(E.1)

where is the strain and is the stress induced in the rod. 

Using the definition of the spring constant k, we obtain from Eq. (E.1):

(E.2)

The significance of the equivalent spring constant of the rod is shown in Fig. 1.24(b).

*

k =

force applied

resulting deflection
=

F

d
=

AE

l

s =

force

area
=

F

A
e =

change in length

original length
=

d

l

d =

d

l
 l = el =

s

E
 l =

Fl

AE

d

W * mg

F * W

W

d

x(t)

k *
3EI

l3

(a) Cantilever with end force

l
E, A, I

x(t)

(b) Equivalent spring

FIGURE 1.25 Spring constant of a cantilever beam.
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Notes:

1. It is possible for a cantilever beam to be subjected to concentrated loads in two directions at its

end one in the y direction and the other in the z direction as shown in Fig. 1.26(a).

When the load is applied along the y direction, the beam bends about the z-axis (Fig. 1.26(b))

and hence the equivalent spring constant will be equal to

(E.3)k =

3EIzz

l3

(Fz)(Fy)

dz

dy

dy

z

y

y

d O

Od

Fz

Fz

Fy

Fy

Fy

z

Fz

x

x

xOw

w

k

k

l

(a)

(b)

(c)

dz

FIGURE 1.26 Spring constants of a beam in two directions.
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When the load is applied along the z direction, the beam bends about the y-axis (Fig. 1.26(c))

and hence the equivalent spring constant will be equal to

(E.4)

2. The spring constants of beams with different end conditions can be found in a similar manner

using results from strength of materials. The representative formulas given in Appendix B can

be used to find the spring constants of the indicated beams and plates. For example, to find the

spring constant of a fixed-fixed beam subjected to a concentrated force P at (Case 3 in

Appendix B), first we express the deflection of the beam at the load point using

as

(E.5)

and then find the spring constant (k) as

(E.6)

where 

3. The effect of the self weight (or mass) of the beam can also be included in finding the spring

constant of the beam (see Example 2.9 in Chapter 2).

*

I = Izz.

k =
P

y
=

3EIl3

a2(l - a)2(al - a2)

y =

P(l - a)2a2

6EIl3
 [3al - 3a2

- a(l - a)] =

Pa2(l - a)2(al - a2)

3EIl3

b = l - a,
(x = a),

x = a

k =

3EIyy

l3

1.7.4
Combination of
Springs

In many practical applications, several linear springs are used in combination. These

springs can be combined into a single equivalent spring as indicated below.

Case 1: Springs in Parallel. To derive an expression for the equivalent spring constant

of springs connected in parallel, consider the two springs shown in Fig. 1.27(a). When a

load W is applied, the system undergoes a static deflection as shown in Fig. 1.27(b).

Then the free-body diagram, shown in Fig. 1.27(c), gives the equilibrium equation

(1.8)W = k1dst + k2dst

dst

k1
k1

k1

k2
k2

k2

k1   st

  st

k2   st

W W

(a) (b) (c)

d

d d

FIGURE 1.27 Springs in parallel.
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If denotes the equivalent spring constant of the combination of the two springs, then

for the same static deflection we have

(1.9)

Equations (1.8) and (1.9) give

(1.10)

In general, if we have n springs with spring constants in parallel, then the

equivalent spring constant can be obtained:

(1.11)

Case 2: Springs in Series. Next we derive an expression for the equivalent spring con-

stant of springs connected in series by considering the two springs shown in Fig. 1.28(a).

Under the action of a load W, springs 1 and 2 undergo elongations and respectively,

as shown in Fig. 1.28(b). The total elongation (or static deflection) of the system, is

given by

(1.12)

Since both springs are subjected to the same force W, we have the equilibrium shown in

Fig. 1.28(c):

(1.13)

If denotes the equivalent spring constant, then for the same static deflection,

(1.14)W = keqdst

keq

W = k2d2

W = k1d1

dst = d1 + d2

dst,

d2,d1

keq = k1 + k2 +
Á + kn

keq

k1, k2, Á , kn

keq = k1 + k2

W = keqdst

dst,

keq

k1

k1
k1

k2

k2

k2

W W

W

W
1

st

 W * k1 1

 W * k2 2

1

2

(a) (b) (c)

d
d

d

d

d

d

FIGURE 1.28 Springs in series.
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Equations (1.13) and (1.14) give

or

(1.15)

Substituting these values of and into Eq. (1.12), we obtain

that is,

(1.16)

Equation (1.16) can be generalized to the case of n springs in series:

(1.17)

In certain applications, springs are connected to rigid components such as pulleys, levers,

and gears. In such cases, an equivalent spring constant can be found using energy equiva-

lence, as illustrated in Examples 1.8 and 1.9.

1

keq

=
1

k1
+

1

k2
+ Á +

1

kn

1

keq

=
1

k1
+

1

k2

keqdst

k1
+

keqdst

k2
= dst

d2d1

d1 =

keqdst

k1
 and d2 =

keqdst

k2

k1d1 = k2d2 = keqdst

E X A M P L E  1 . 5
Equivalent k of a Suspension System

Figure 1.29 shows the suspension system of a freight truck with a parallel-spring arrangement. Find

the equivalent spring constant of the suspension if each of the three helical springs is made of steel

with a shear modulus and has five effective turns, mean coil diameter

and wire diameter 

Solution: The stiffness of each helical spring is given by

(See inside front cover for the formula.)

Since the three springs are identical and parallel, the equivalent spring constant of the suspen-

sion system is given by

keq = 3k = 3(40,000.0) = 120,000.0 N/m

k =
d4G

8D3n
=

(0.02)4(80 * 109)

8(0.2)3(5)
= 40,000.0 N/m

d = 2 cm.D = 20 cm,
G = 80 * 109 N/m2
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*

FIGURE 1.29 Parallel arrangement of springs in a freight truck. (Courtesy of Buckeye Steel

Castings Company.)

E X A M P L E  1 . 6
Torsional Spring Constant of a Propeller Shaft

Determine the torsional spring constant of the steel propeller shaft shown in Fig. 1.30.

Solution: We need to consider the segments 12 and 23 of the shaft as springs in combination. From

Fig. 1.30 the torque induced at any cross section of the shaft (such as AA or BB) can be seen to be

0.3 m
0.2 m

2 m

0.25 m
0.15 m

3 m

31 2

A

A

B

B

T

FIGURE 1.30 Propeller shaft.
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equal to the torque applied at the propeller, T. Hence the elasticities (springs) corresponding to the

two segments 12 and 23 are to be considered as series springs. The spring constants of segments 12

and 23 of the shaft ( and ) are given by

Since the springs are in series, Eq. (1.16) gives

*

kteq
=

kt12
kt23

kt12
+ kt23

=

(25.5255 * 106)(8.9012 * 106)

(25.5255 * 106
+ 8.9012 * 106)

= 6.5997 * 106 N-m/rad

 = 8.9012 * 106 N-m/rad

 kt23
=

GJ23

l23
=

Gp(D23
4
- d23

4 )

32l23
=

(80 * 109)p(0.254
- 0.154)

32(3)

 = 25.5255 * 106 N-m/rad

 kt12
=

GJ12

l12
=

Gp(D12
4
- d12

4 )

32l12
=

(80 * 109)p(0.34
- 0.24)

32(2)

kt23
kt12

E X A M P L E  1 . 7
Equivalent k of Hoisting Drum

A hoisting drum, carrying a steel wire rope, is mounted at the end of a cantilever beam as shown in

Fig. 1.31(a). Determine the equivalent spring constant of the system when the suspended length of

the wire rope is l. Assume that the net cross-sectional diameter of the wire rope is d and the Young s

modulus of the beam and the wire rope is E.

Solution: The spring constant of the cantilever beam is given by

(E.1)

The stiffness of the wire rope subjected to axial loading is

(E.2)

Since both the wire rope and the cantilever beam experience the same load W, as shown in Fig.

1.31(b), they can be modeled as springs in series, as shown in Fig. 1.31(c). The equivalent spring

constant is given by

or

(E.3)keq =
E

4
+ pat3d2

pd2b3
+ lat3

*

1

keq

=
1

kb
+

1

kr
=

4b3

Eat3
+

4l

pd2E

keq

kr =
AE

l
=
pd2E

4l

kb =
3EI

b3
=

3E

b3
+ 1

12
 at3* =

Eat3

4b3
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t

b

d

W

a

W

W

W

W

W

l

Beam

Rope

kb

kr

keq

(a)

(b) (c) (d)

W

FIGURE 1.31 Hoisting drum.

*

E X A M P L E  1 . 8
Equivalent k of a Crane

The boom AB of the crane shown in Fig. 1.32(a) is a uniform steel bar of length 10 m and area of

cross section A weight W is suspended while the crane is stationary. The cable CDEBF

is made of steel and has a cross-sectional area of Neglecting the effect of the cable CDEB,

find the equivalent spring constant of the system in the vertical direction.

Solution: The equivalent spring constant can be found using the equivalence of potential energies

of the two systems. Since the base of the crane is rigid, the cable and the boom can be considered to

be fixed at points F and A, respectively. Also, the effect of the cable CDEB is negligible; hence the

weight W can be assumed to act through point B as shown in Fig. 1.32(b).

100 mm2
.

2,500 mm2
.
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W

keq

1.5 m

1.5 m
F A

C

D

B

E

W

10
 m

45 

45  

A

B

F

W
l1, k1

l2  10 m, k2

x

3 m

45 

(a)

(b) (c)

u

90   u

FIGURE 1.32 Crane lifting a load.

A vertical displacement x of point B will cause the spring (boom) to deform by an amount and

the spring (cable) to deform by an amount The length of the cable FB, is given by Fig. 1.32(b):

The angle satisfies the relation

The total potential energy (U) stored in the springs and can be expressed, using Eq. (1.2) as

(E.1)U =
1

2
 k1 [x cos (90° - u)]2

+
1

2
 k2 [x cos (90° - 45°)]2

k2k1

l1
2
+ 32

- 2(l1)(3) cos u = 102,  cos u = 0.8184, u = 35.0736°

u

l1
2
= 32

+ 102
- 2(3)(10) cos 135° = 151.426, l1 = 12.3055 m

l1,
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where

and

Since the equivalent spring in the vertical direction undergoes a deformation x, the potential energy

of the equivalent spring is given by

(E.2)

By setting we obtain the equivalent spring constant of the system as

*

keq = k1 sin2 u + k2 sin2 45° = k1 sin2 35.0736° + k2 sin2 45° = 26.4304 * 106 N/m

U = Ueq,

Ueq =
1
2 k
#

eqx2

(Ueq)

k2 =
A2E2

l2
=

(2500 * 10-6)(207 * 109)

10
= 5.1750 * 107 N/m

k1 =
A1E1

l1
=

(100 * 10-6)(207 * 109)

12.3055
= 1.6822 * 106 N/m

E X A M P L E  1 . 9
Equivalent k of a Rigid Bar Connected by Springs

A hinged rigid bar of length l is connected by two springs of stiffnesses and and is subjected

to a force F as shown in Fig. 1.33(a). Assuming that the angular displacement of the bar is small,

find the equivalent spring constant of the system that relates the applied force F to the resulting dis-

placement x.

(u)
k2k 1

x D

F

F

C x

B

A
k1

k2

l1

l3

l2

B

A

(c)(a) (b)

O

k1

k2

k2 x2

l1

l2

x2

x1

l

k1 x1 A*

F

x

B*

C*

O

u

FIGURE 1.33 Rigid bar connected by springs.
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Solution: For a small angular displacement of the rigid bar the points of attachment of springs

and (A and B) and the point of application (C) of the force F undergo the linear or horizontal

displacements and respectively. Since is small, the horizontal displacements

of points A, B, and C can be approximated as and respectively. The

reactions of the springs, and will be as indicated in Fig. 1.33(b). The equivalent spring

constant of the system referred to the point of application of the force F can be determined by

considering the moment equilibrium of the forces about the hinge point O:

or

(E.1)

By expressing F as Eq. (E.1) can be written as

(E.2)

Using and Eq. (E.2) yields the desired result:

(E.3)

Notes:

1. If the force F is applied at another point D of the rigid bar as shown in Fig. 1.33(c), the equiv-

alent spring constant referred to point D can be found as

(E.4)

2. The equivalent spring constant, of the system can also be found by using the relation:

Work done by the applied force energy stored in springs and (E.5)

For the system shown in Fig. 1.33(a), Eq. (E.5) gives

(E.6)

from which Eq. (E.3) can readily be obtained.

3. Although the two springs appear to be connected to the rigid bar in parallel, the formula of par-

allel springs (Eq. 1.12) cannot be used because the displacements of the two springs are not the

same.

*

1

2
 Fx =

1

2
 k1x1

2
+

1

2
 k2x2

2

k2k1F = Strain

keq,

keq = k1+ l1

l3
*2

+ k2 + l2

l3
*2

keq = k1+ l1

l
*2

+ k2 + l2

l
*2

x = lu,x1 = l1u, x2 = l2u,

F = keqx = k1+x1l1

l
* + k2 +x2l2

l
*

k eqx,

F = k1+x1l1

l
* + k2+x2l2

l
*

k1x1(l1) + k2x2(l2) = F(l)

(keq)
k2x2,k1x 1

x = lu,x1 = l1u, x2 = l2u
ul sin u,l1 sin u, l2 sin u,

k2k1

(u),



1.7 SPRING ELEMENTS 39

1.7.5
Spring Constant
Associated with
the Restoring
Force due to
Gravity

In some applications, a restoring force or moment due to gravity is developed when a

mass undergoes a displacement. In such cases, an equivalent spring constant can be asso-

ciated with the restoring force or moment of gravity. The following example illustrates

the procedure.

E X A M P L E  1 . 1 0
Spring Constant Associated with Restoring Force due to Gravity

Figure 1.34 shows a simple pendulum of length l with a bob of mass m. Considering an angular dis-

placement of the pendulum, determine the equivalent spring constant associated with the restoring

force (or moment).

Solution: When the pendulum undergoes an angular displacement the mass m moves by a

distance along the horizontal (x) direction. The restoring moment or torque (T) created by the

weight of the mass (mg) about the pivot point O is given by

(E.1)

For small angular displacements can be approximated as (see Appendix A) and

Eq. (E.1) becomes

(E.2)

By expressing Eq. (E.2) as

(E.3)

the desired equivalent torsional spring constant can be identified as

(E.4)kt = mgl

kt

T = ktu

T = mglu

sin u L uu, sin u

T = mg(l sin u)

l sin u
u,

u

O

l

mgy

m

x

l sin u

u

FIGURE 1.34 Simple pendulum. *
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1.8 Mass or Inertia Elements

The mass or inertia element is assumed to be a rigid body; it can gain or lose kinetic energy

whenever the velocity of the body changes. From Newton s second law of motion, the

product of the mass and its acceleration is equal to the force applied to the mass. Work is

equal to the force multiplied by the displacement in the direction of the force, and the work

done on a mass is stored in the form of the mass s kinetic energy.

In most cases, we must use a mathematical model to represent the actual vibrating sys-

tem, and there are often several possible models. The purpose of the analysis often deter-

mines which mathematical model is appropriate. Once the model is chosen, the mass or

inertia elements of the system can be easily identified. For example, consider again the

cantilever beam with an end mass shown in Fig. 1.25(a). For a quick and reasonably accu-

rate analysis, the mass and damping of the beam can be disregarded; the system can be

modeled as a spring-mass system, as shown in Fig. 1.25(b). The tip mass m represents the

mass element, and the elasticity of the beam denotes the stiffness of the spring. Next, con-

sider a multistory building subjected to an earthquake. Assuming that the mass of the

frame is negligible compared to the masses of the floors, the building can be modeled as

a multi-degree-of-freedom system, as shown in Fig. 1.35. The masses at the various floor

levels represent the mass elements, and the elasticities of the vertical members denote the

spring elements.

k5

m5
x5

k4

m4
x4

k3

m3
x3

k2

m2
x2

k1

m1
x1

k5

k4

k3

k2

k1

m5

x5

m4

x4

m3

x3

m2

x2

m1

x1

(a) (b)

FIGURE 1.35 Idealization of a multistory
building as a multi-degree-of-freedom system.

1.8.1

Combination 

of Masses

In many practical applications, several masses appear in combination. For a simple

analysis, we can replace these masses by a single equivalent mass, as indicated below

[1.27].
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Case 1: Translational Masses Connected by a Rigid Bar. Let the masses be attached

to a rigid bar that is pivoted at one end, as shown in Fig. 1.36(a). The equivalent mass can

be assumed to be located at any point along the bar. To be specific, we assume the loca-

tion of the equivalent mass to be that of mass The velocities of masses and

can be expressed in terms of the velocity of mass by assuming small angu-

lar displacements for the bar, as

(1.18)

and

(1.19)

By equating the kinetic energy of the three-mass system to that of the equivalent mass sys-

tem, we obtain

(1.20)

This equation gives, in view of Eqs. (1.18) and (1.19):

(1.21)

It can be seen that the equivalent mass of a system composed of several masses (each mov-

ing at a different velocity) can be thought of as the imaginary mass which, while moving

with a specified velocity v, will have the same kinetic energy as that of the system.

Case 2: Translational and Rotational Masses Coupled Together. Let a mass m hav-

ing a translational velocity be coupled to another mass (of mass moment of inertia ) 

having a rotational velocity as in the rack-and-pinion arrangement shown in Fig. 1.37. u
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FIGURE 1.36 Translational masses connected by a rigid bar.
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These two masses can be combined to obtain either (1) a single equivalent translational

mass or (2) a single equivalent rotational mass as shown below.

1. Equivalent translational mass. The kinetic energy of the two masses is given by

(1.22)

and the kinetic energy of the equivalent mass can be expressed as

(1.23)

Since and the equivalence of T and gives

that is,

(1.24)

2. Equivalent rotational mass. Here and and the equivalence of T and

leads to

or

(1.25)Jeq = J0 + mR2

1

2
 Jeq u

#
2
=

1

2
 m(u

#

R)2 +
1

2
 J0 u

#
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 mx
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FIGURE 1.37 Translational and rotational masses in a
rack-and-pinion arrangement.

E X A M P L E  1 . 1 1
Equivalent Mass of a System

Find the equivalent mass of the system shown in Fig. 1.38, where the rigid link 1 is attached to the

pulley and rotates with it.



1.8 MASS OR INERTIA ELEMENTS 43

Solution: Assuming small displacements, the equivalent mass can be determined using the

equivalence of the kinetic energies of the two systems. When the mass m is displaced by a distance

x, the pulley and the rigid link 1 rotate by an angle This causes the rigid link 2 and

the cylinder to be displaced by a distance Since the cylinder rolls without

slippage, it rotates by an angle The kinetic energy of the system (T) can be

expressed (for small displacements) as:

(E.1)

where and denote the mass moments of inertia of the pulley, link 1 (about O), and cylinder, 

respectively, and indicate the angular velocities of the pulley, link 1 (about O), and cylin-

der, respectively, and and represent the linear velocities of the mass m and link 2, respectively.

Noting that and Eq. (E.1) can be rewritten as

(E.2)

By equating Eq. (E.2) to the kinetic energy of the equivalent system
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FIGURE 1.38 System considered for finding equivalent mass.
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E X A M P L E  1 . 1 2

Cam-Follower Mechanism

A cam-follower mechanism (Fig. 1.39) is used to convert the rotary motion of a shaft into the oscil-

lating or reciprocating motion of a valve. The follower system consists of a pushrod of mass a

rocker arm of mass and mass moment of inertia about its C.G., a valve of mass and a valve

spring of negligible mass [1.28 1.30]. Find the equivalent mass of this cam-follower system

by assuming the location of as (i) point A and (ii) point C.

Solution: The equivalent mass of the cam-follower system can be determined using the equivalence

of the kinetic energies of the two systems. Due to a vertical displacement x of the pushrod, the rocker

arm rotates by an angle about the pivot point, the valve moves downward by

and the C.G. of the rocker arm moves downward by The

kinetic energy of the system (T) can be expressed as2
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+
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FIGURE 1.39 Cam-follower system.

we obtain the equivalent mass of the system as

(E.4)

*

meq = m +

Jp

rp
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m1l1

2

rp
2

+
m2l1

2

rp
2

+
1

2
 
mcl1

2

rp
2

+ mc 
l1
2

rp
2



1.9 DAMPING ELEMENTS 45

where and are the linear velocities of the pushrod, C.G. of the rocker arm, and the valve, 

respectively, and is the angular velocity of the rocker arm.

(i) If denotes the equivalent mass placed at point A, with the kinetic energy of the

equivalent mass system is given by

(E.2)

By equating T and and noting that

we obtain

(E.3)

(ii) Similarly, if the equivalent mass is located at point C, and

(E.4)

Equating (E.4) and (E.1) gives

(E.5)

*

1.9 Damping Elements
In many practical systems, the vibrational energy is gradually converted to heat or sound.

Due to the reduction in the energy, the response, such as the displacement of the system,

gradually decreases. The mechanism by which the vibrational energy is gradually con-

verted into heat or sound is known as damping. Although the amount of energy converted

into heat or sound is relatively small, the consideration of damping becomes important for

an accurate prediction of the vibration response of a system. A damper is assumed to have

neither mass nor elasticity, and damping force exists only if there is relative velocity

between the two ends of the damper. It is difficult to determine the causes of damping in

practical systems. Hence damping is modeled as one or more of the following types.

Viscous Damping. Viscous damping is the most commonly used damping mechanism

in vibration analysis. When mechanical systems vibrate in a fluid medium such as air, gas,

water, or oil, the resistance offered by the fluid to the moving body causes energy to be

dissipated. In this case, the amount of dissipated energy depends on many factors, such as

the size and shape of the vibrating body, the viscosity of the fluid, the frequency of vibra-

tion, and the velocity of the vibrating body. In viscous damping, the damping force is pro-

portional to the velocity of the vibrating body. Typical examples of viscous damping
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include (1) fluid film between sliding surfaces, (2) fluid flow around a piston in a cylinder,

(3) fluid flow through an orifice, and (4) fluid film around a journal in a bearing.

Coulomb or Dry-Friction Damping. Here the damping force is constant in magnitude

but opposite in direction to that of the motion of the vibrating body. It is caused by friction

between rubbing surfaces that either are dry or have insufficient lubrication.

Material or Solid or Hysteretic Damping. When a material is deformed, energy is

absorbed and dissipated by the material [1.31]. The effect is due to friction between the

internal planes, which slip or slide as the deformations take place. When a body having

material damping is subjected to vibration, the stress-strain diagram shows a hysteresis

loop as indicated in Fig. 1.40(a). The area of this loop denotes the energy lost per unit vol-

ume of the body per cycle due to damping.3

3When the load applied to an elastic body is increased, the stress and the strain in the body also increase.
The area under the curve, given by

denotes the energy expended (work done) per unit volume of the body. When the load on the body is decreased,

energy will be recovered. When the unloading path is different from the loading path, the area ABC in Fig. 1.40(b)
the area of the hysteresis loop in Fig. 1.40(a) denotes the energy lost per unit volume of the body.

u = Ls de
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C D
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de

Strain (e)

(b)

s

FIGURE 1.40 Hysteresis loop for elastic materials.

1.9.1
Construction
of Viscous
Dampers

Viscous dampers can be constructed in several ways. For instance, when a plate moves rel-

ative to another parallel plate with a viscous fluid in between the plates, a viscous damper

can be obtained. The following examples illustrate the various methods of constructing

viscous dampers used in different applications.
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E X A M P L E  1 . 1 3
Damping Constant of Parallel Plates Separated by Viscous Fluid

Consider two parallel plates separated by a distance h, with a fluid of viscosity between the plates.

Derive an expression for the damping constant when one plate moves with a velocity v relative to the

other as shown in Fig. 1.41.

Solution: Let one plate be fixed and let the other plate be moved with a velocity v in its own plane.

The fluid layers in contact with the moving plate move with a velocity v, while those in contact with

the fixed plate do not move. The velocities of intermediate fluid layers are assumed to vary linearly

between 0 and v, as shown in Fig. 1.41. According to Newton s law of viscous flow, the shear stress

developed in the fluid layer at a distance y from the fixed plate is given by

(E.1)

where is the velocity gradient. The shear or resisting force (F) developed at the bot-

tom surface of the moving plate is

(E.2)

where A is the surface area of the moving plate. By expressing F as

(E.3)

the damping constant c can be found as

(E.4)c =

mA

h

F = cv

F = tA =

mAv

h

du/dy = v/h

t = m 

du

dy

(t)

m

Surface area of plate * A

Viscous
fluid

F (damping force)

y
h

v *
dx
dt

u *
vy
h

FIGURE 1.41 Parallel plates with a viscous fluid in between.

E X A M P L E  1 . 1 4
Clearance in a Bearing

A bearing, which can be approximated as two flat plates separated by a thin film of lubricant (Fig. 1.42),

is found to offer a resistance of 400 N when SAE 30 oil is used as the lubricant and the relative veloc-

ity between the plates is 10 m/s. If the area of the plates (A) is determine the clearance between

the plates. Assume the absolute viscosity of SAE 30 oil as reyn or 0.3445 Pa-s.50 m
0.1 m2,

*
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h

v

Area (A)

FIGURE 1.42 Flat plates separated by thin
film of lubricant.

Solution: Since the resisting force (F) can be expressed as where c is the damping constant

and v is the velocity, we have

(E.1)

By modeling the bearing as a flat-plate-type damper, the damping constant is given by Eq. (E.4) of

Example 1.13:

(E.2)

Using the known data, Eq. (E.2) gives

(E.3)

*

c = 40 =

(0.3445)(0.1)

h
 or h = 0.86125 mm

c =

mA

h

c =

F

v
=

400

10
= 40 N-s/m

F = cv,

E X A M P L E  1 . 1 5
Damping Constant of a Journal Bearing

A journal bearing is used to provide lateral support to a rotating shaft as shown in Fig. 1.43. If the

radius of the shaft is R, angular velocity of the shaft is radial clearance between the shaft and the

bearing is d, viscosity of the fluid (lubricant) is and the length of the bearing is l, derive an expres-

sion for the rotational damping constant of the journal bearing. Assume that the leakage of the fluid

is negligible.

Solution: The damping constant of the journal bearing can be determined using the equation for the

shear stress in viscous fluid. The fluid in contact with the rotating shaft will have a linear velocity

(in tangential direction) of while the fluid in contact with the stationary bearing will have

zero velocity. Assuming a linear variation for the velocity of the fluid in the radial direction, we have

(E.1)v(r) =

vr

d
=

rRv

d

v = Rv,

m,
v,
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The shearing stress in the lubricant is given by the product of the radial velocity gradient and the

viscosity of the lubricant:

(E.2)

The force required to shear the fluid film is equal to stress times the area. The torque on the shaft (T)

is equal to the force times the lever arm, so that

(E.3)

where is the surface area of the shaft exposed to the lubricant. Thus Eq. (E.3) can be

rewritten as

(E.4)T = amRv
d

b(2pRl)R =

2pmR3lv

d

A = 2pRl

T = (tA)R

t = m 

dv

dr
=

mRv
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l

d

d

R

R

v
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fluid

FIGURE 1.43 A journal bearing.
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FIGURE 1.44 A dashpot.

From the definition of the rotational damping constant of the bearing 

(E.5)

we obtain the desired expression for the rotational damping constant as

(E.6)

Note: Equation (E.4) is called Petroff s law and was published originally in 1883. This equation is

widely used in the design of journal bearings [1.43].

*

ct =
2pmR3l

d

ct =
T

v

(ct):

E X A M P L E  1 . 1 6
Piston-Cylinder Dashpot

Develop an expression for the damping constant of the dashpot shown in Fig. 1.44(a).

Solution: The damping constant of the dashpot can be determined using the shear-stress equation

for viscous fluid flow and the rate-of-fluid-flow equation. As shown in Fig. 1.44(a), the dashpot

consists of a piston of diameter D and length l, moving with velocity in a cylinder filled with a

liquid of viscosity [1.24, 1.32]. Let the clearance between the piston and the cylinder wall be d.

At a distance y from the moving surface, let the velocity and shear stress be v and and at a distance

let the velocity and shear stress be and respectively (see Fig. 1.44(b)).

The negative sign for dv shows that the velocity decreases as we move toward the cylinder wall. The

viscous force on this annular ring is equal to

(E.1)F = pDl dt = pDl 
dt

dy
 dy

(t + dt),(v - dv)(y + dy)
t,

m

v0
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But the shear stress is given by

(E.2)

where the negative sign is consistent with a decreasing velocity gradient [1.33]. Using Eq. (E.2) in

Eq. (E.1), we obtain

(E.3)

The force on the piston will cause a pressure difference on the ends of the element, given by

(E.4)

Thus the pressure force on the end of the element is

(E.5)

where denotes the annular area between y and If we assume uniform mean

velocity in the direction of motion of the fluid, the forces given in Eqs. (E.3) and (E.5) must be equal.

Thus we get

or

(E.6)

Integrating this equation twice and using the boundary conditions at and at

we obtain

(E.7)

The rate of flow through the clearance space can be obtained by integrating the rate of flow through

an element between the limits and 

(E.8)

The volume of the liquid flowing through the clearance space per second must be equal to the vol-

ume per second displaced by the piston. Hence the velocity of the piston will be equal to this rate of

flow divided by the piston area. This gives
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Equations (E.9) and (E.8) lead to

(E.10)

By writing the force as the damping constant c can be found as

(E.11)

*

c = mB 3pD3l

4d3
 ¢1 +

2d

D
R

P = cv0,

P = C 3pD3l¢1 +
2d

D

4d3
Smv0

1.9.2
Linearization of
a Nonlinear
Damper

If the force (F)-velocity (v) relationship of a damper is nonlinear:

(1.26)

a linearization process can be used about the operating velocity as in the case of a

nonlinear spring. The linearization process gives the equivalent damping constant as

(1.27)c =
dF

dv
 `

v*

(v*),

F =  F(v)

1.9.3
Combination of
Dampers

In some dynamic systems, multiple dampers are used. In such cases, all the dampers are

replaced by a single equivalent damper. When dampers appear in combination, we can use

procedures similar to those used in finding the equivalent spring constant of multiple

springs to find a single equivalent damper. For example, when two translational dampers,

with damping constants and appear in combination, the equivalent damping constant

can be found as (see Problem 1.55):

(1.28)

(1.29)Series dampers: 1

ceq

=
1

c1
+

1

c2

 Parallel dampers: ceq = c1 + c2

(ceq)
c2,c1

E X A M P L E  1 . 1 7
Equivalent Spring and Damping Constants of a Machine Tool Support

A precision milling machine is supported on four shock mounts, as shown in Fig. 1.45(a). The

elasticity and damping of each shock mount can be modeled as a spring and a viscous damper, as

shown in Fig. 1.45(b). Find the equivalent spring constant, and the equivalent damping con-

stant, of the machine tool support in terms of the spring constants and damping constants

of the mounts.(ci)
(ki)ceq,

keq,



1.9 DAMPING ELEMENTS 53
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FIGURE 1.45 Horizontal milling machine.
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Solution: The free-body diagrams of the four springs and four dampers are shown in Fig. 1.45(c).

Assuming that the center of mass, G, is located symmetrically with respect to the four springs and

dampers, we notice that all the springs will be subjected to the same displacement, x, and all the

dampers will be subject to the same relative velocity where x and denote the displacement and

velocity, respectively, of the center of mass, G. Hence the forces acting on the springs and the

dampers can be expressed as

(E.1)

Let the total forces acting on all the springs and all the dampers be and respectively (see

Fig. 1.45,(d)). The force equilibrium equations can thus be expressed as

(E.2)

where with W denoting the total vertical force (including the inertia force) acting on

the milling machine. From Fig. 1.45(d), we have

(E.3)

Equation (E.2), along with Eqs. (E.1) and (E.3), yields

(E.4)

when and for 

Note: If the center of mass, G, is not located symmetrically with respect to the four springs and

dampers, the ith spring experiences a displacement of and the ith damper experiences a velocity of

, where and can be related to the displacement x and velocity of the center of mass of the

milling machine, G. In such a case, Eqs. (E.1) and (E.4) need to be modified suitably.

*

1.10 Harmonic Motion

Oscillatory motion may repeat itself regularly, as in the case of a simple pendulum, or it

may display considerable irregularity, as in the case of ground motion during an earth-

quake. If the motion is repeated after equal intervals of time, it is called periodic motion.

The simplest type of periodic motion is harmonic motion. The motion imparted to the mass

m due to the Scotch yoke mechanism shown in Fig. 1.46 is an example of simple harmonic

motion [1.24, 1.34, 1.35]. In this system, a crank of radius A rotates about the point O. The

other end of the crank, P, slides in a slotted rod, which reciprocates in the vertical guide

R. When the crank rotates at an angular velocity the end point S of the slotted link andv,

x
#

x
#

ixix
#

i

xi

i = 1, 2, 3, 4.ci = cki = k

ceq = c1 + c2 + c3 + c4 = 4c

keq = k1 + k2 + k3 + k4 = 4k

Fd = ceqx
#

Fs = keqx

Fs + Fd = W,

Fd = Fd1 + Fd2 + Fd3 + Fd4

Fs = Fs1 + Fs2 + Fs3 + Fs4

Fd,Fs

Fdi = cix
#
; i = 1, 2, 3, 4

Fsi = kix; i = 1, 2, 3, 4

(Fdi)
(Fsi)

x
#

x
#
,
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hence the mass m of the spring-mass system are displaced from their middle positions by

an amount x (in time t) given by

(1.30)

This motion is shown by the sinusoidal curve in Fig. 1.46. The velocity of the mass m at

time t is given by

(1.31)

and the acceleration by

(1.32)
d

2
x

dt
2
= -v

2
A sin vt = -v

2
x

dx

dt
= vA cos vt

x = A sin u = A sin vt

Slotted rod

O

A

P

R

S

m

k

x(t)

A

O

*A

2p 3p u + vt

x

x + A sin vt

p

u + vt

FIGURE 1.46 Scotch yoke mechanism.



56 CHAPTER 1 FUNDAMENTALS OF VIBRATION

2p

2p

3p

p

p

3p

x * A cos vt

y * A sin vt

O

P

y

P
P

A A

O O

Angular
displacement

One cycle of motion

One
cycle

of motion

x

A

u * vtu * vt

u * vt

v

FIGURE 1.47 Harmonic motion as the projection of the end of a rotating vector.

It can be seen that the acceleration is directly proportional to the displacement. Such a

vibration, with the acceleration proportional to the displacement and directed toward the

mean position, is known as simple harmonic motion. The motion given by 

is another example of a simple harmonic motion. Figure 1.46 clearly shows the similarity

between cyclic (harmonic) motion and sinusoidal motion.

x = A cos vt

1.10.1
Vectorial
Representation
of Harmonic
Motion

Harmonic motion can be represented conveniently by means of a vector of magnitude

A rotating at a constant angular velocity In Fig. 1.47, the projection of the tip of the vec-

tor on the vertical axis is given by

(1.33)y = A sin vt

X
:

= OP
¡

v.

OP
¡
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and its projection on the horizontal axis by

(1.34)x = A cos vt

1.10.2
Complex-
Number
Representation
of Harmonic
Motion

As seen above, the vectorial method of representing harmonic motion requires the

description of both the horizontal and vertical components. It is more convenient to rep-

resent harmonic motion using a complex-number representation. Any vector in the xy-

plane can be represented as a complex number:

(1.35)

where and a and b denote the x and y components of respectively (see 

Fig. 1.48). Components a and b are also called the real and imaginary parts of the vector

If A denotes the modulus or absolute value of the vector and represents the argu-

ment or the angle between the vector and the x-axis, then can also be expressed as

(1.36)

with

(1.37)

and

(1.38)

Noting that and can be expanded in a series as

(1.39) cos u = 1 -
u

2

2!
+
u

4

4!
- Á = 1 +

(iu)2

2!
+

(iu)4

4!
+ Á

i sin ui2 = -1, i3
= - i, i4

= 1, Á , cos u

u = tan-1
 

b

a

A = (a2
+ b2)1/2

X
:

= A cos u + iA sin u

X
:

uX
:

,X
:

.

X
:

,i = 1-1

X
:

= a + ib

X
:

y  (Imaginary)

x (Real)

b

aO

X + a * ib + Aeiu

u

FIGURE 1.48 Representation of a complex number.
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(1.40)

Equations (1.39) and (1.40) yield

(1.41)

and

(1.42)

Thus Eq. (1.36) can be expressed as

(1.43)X
:

= A(cos u + i sin u) = Aeiu

(cos u - i sin u) = 1 - iu +
(iu)2

2!
-

(iu)3

3!
+ Á = e-iu

(cos u + i sin u) = 1 + iu +
(iu)2

2!
+

(iu)3

3!
+ Á = eiu

 i sin u = iBu - u
3

3!
+

u
5

5!
- ÁR = iu +

(iu)3

3!
+

(iu)5

5!
+ Á

1.10.3
Complex
Algebra

Complex numbers are often represented without using a vector notation as

(1.44)

where a and b denote the real and imaginary parts of z. The addition, subtraction, multi-

plication, and division of complex numbers can be achieved by using the usual rules of

algebra. Let

(1.45)

(1.46)

where

(1.47)

and

(1.48)

The sum and difference of and can be found as

(1.49)

(1.50) = (a1 - a2) + i(b1 - b2)

 z1 - z2 = A1e
iu1 - A2eiu2 = (a1 + ib1) - (a2 + ib2)

 = (a1 + a2) + i(b1 + b2)

 z1 + z2 = A1e
iu1 + A2eiu2 = (a1 + ib1) + (a2 + ib2)

z2z1

uj = tan-1¢ bj

aj
;  j = 1, 2

Aj = 2aj
2
+ bj

2;  j = 1, 2

z2 = a2 + ib2 = A2eiu2

z1 = a1 + ib1 = A1e
iu1

z = a + ib
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1.10.4
Operations on
Harmonic
Functions

Using complex-number representation, the rotating vector of Fig. 1.47 can be written as

(1.51)

where denotes the circular frequency (rad/sec) of rotation of the vector in counter-

clockwise direction. The differentiation of the harmonic motion given by Eq. (1.51) with

respect to time gives

(1.52)

(1.53)

Thus the displacement, velocity, and acceleration can be expressed as4

(1.54)

(1.55)

(1.56)

where Re denotes the real part. These quantities are shown as rotating vectors in Fig. 1.49.

It can be seen that the acceleration vector leads the velocity vector by 90°, and the latter

leads the displacement vector by 90°.

Harmonic functions can be added vectorially, as shown in Fig. 1.50. If

and then the magnitude of the resultant 

vector is given by

(1.57)

and the angle by

(1.58)a = tan-1+ A2 sin u

A1 + A2 cos u
*

a

A = 2(A1 + A2 cos u)2
+ (A2 sin u)2

X
:

Re( X
:

2) = A2 cos(vt + u),Re( X
:

1) = A1 cos vt

= v
2A cos (vt + 180°)

= -v
2A cos vtacceleration = Re[-v2Aeivt]

= vA cos (vt + 90°)

= -vA sin vtvelocity = Re[ivAeivt]

= A cos vtdisplacement = Re[Aeivt]

d2 X
:

dt2
=

d

dt
 (ivAeivt) = -v

2Aeivt
= -v

2X
:

d X
:

dt
=

d

dt
 (Aeivt) = ivAeivt

= ivX
:

X
:

v

X
:

= Aeivt

X
:

4If the harmonic displacement is originally given as then we have

where Im denotes the imaginary part.

acceleration  = Im[-v2Aeivt] = v
2 A sin(vt + 180°)

velocity  = Im[ivAeivt] = vA sin(vt + 90°)

displacement = Im[Aeivt] = A sin vt

x(t) = A sin vt,
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x(t)

x(t)

x(t)

O
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p/2

p/2
vt

vt
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X  ivX

X     2
 
X

X
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v

v

FIGURE 1.49 Displacement, velocity, and accelerations as rotating vectors.
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FIGURE 1.50 Vectorial addition of harmonic functions.

Since the original functions are given as real components, the sum is given by 

Re( X
:

) = A cos(vt + a).

X
:

1 + X
:

2

E X A M P L E  1 . 1 8

Addition of Harmonic Motions

Find the sum of the two harmonic motions 

Solution: Method 1: By using trigonometric relations: Since the circular frequency is the same for

both and we express the sum as

(E.1)

That is,

(E.2) = 10 cos vt + 15(cos vt cos 2 - sin vt sin 2)

A(cos vt cos a - sin vt sin a) = 10 cos vt + 15 cos(vt + 2)

x(t) = A cos(vt + a) = x1(t) + x2(t)

x2(t),x1(t)

x1(t) = 10 cos vt and x2(t) = 15 cos(vt + 2).
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That is,

(E.3)

By equating the corresponding coefficients of and on both sides, we obtain

(E.4)

and

(E.5)

Method 2: By using vectors: For an arbitrary value of the harmonic motions and can

be denoted graphically as shown in Fig. 1.51. By adding them vectorially, the resultant vector x(t)

can be found to be

(E.6)

Method 3: By using complex-number representation: The two harmonic motions can be denoted in

terms of complex numbers:

(E.7)

The sum of and can be expressed as

(E.8)

where A and can be determined using Eqs. (1.47) and (1.48) as and a = 74.5963°.A = 14.1477a

x(t) = Re[Aei(vt+a)]

x2(t)x1(t)

x2(t) = Re[A2ei(vt+2)] K Re[15ei(vt+2)]

x1(t) = Re[A1e
ivt] K Re[10eivt]

x(t) = 14.1477 cos(vt + 74.5963°)

x2(t)x1(t)vt,

a = tan-1+ 15 sin 2

10 + 15 cos 2
* = 74.5963°

 = 14.1477

 A = 2(10 + 15 cos 2)2
+ (15 sin 2)2

 A sin a = 15 sin 2

 A cos a = 10 + 15 cos 2

sin vtcos vt

cos vt(A cos a) - sin vt(A sin a) =  cos vt(10 + 15 cos 2) - sin vt(15 sin 2)

Im
x(t)

x2(t)

x1(t)

15

10

14.1477

74.6

Re
vt

O

vt  114.6

FIGURE 1.51 Addition of harmonic motions.

*
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1.10.5
Definitions and
Terminology

The following definitions and terminology are useful in dealing with harmonic motion and

other periodic functions.

Cycle. The movement of a vibrating body from its undisturbed or equilibrium position to

its extreme position in one direction, then to the equilibrium position, then to its extreme

position in the other direction, and back to equilibrium position is called a cycle of vibra-

tion. One revolution (i.e., angular displacement of radians) of the pin P in Fig. 1.46 or

one revolution of the vector in Fig. 1.47 constitutes a cycle.

Amplitude. The maximum displacement of a vibrating body from its equilibrium position

is called the amplitude of vibration. In Figs. 1.46 and 1.47 the amplitude of vibration is

equal to A.

Period of oscillation. The time taken to complete one cycle of motion is known as the

period of oscillation or time period and is denoted by It is equal to the time required for

the vector in Fig. 1.47 to rotate through an angle of and hence

(1.59)

where is called the circular frequency.

Frequency of oscillation. The number of cycles per unit time is called the frequency of

oscillation or simply the frequency and is denoted by f. Thus

(1.60)

Here is called the circular frequency to distinguish it from the linear frequency

The variable denotes the angular velocity of the cyclic motion; f is measured

in cycles per second (hertz) while is measured in radians per second.

Phase angle. Consider two vibratory motions denoted by

(1.61)

(1.62)

The two harmonic motions given by Eqs. (1.61) and (1.62) are called synchronous because

they have the same frequency or angular velocity, Two synchronous oscillations need

not have the same amplitude, and they need not attain their maximum values at the same

time. The motions given by Eqs. (1.61) and (1.62) can be represented graphically as shown

in Fig. 1.52. In this figure, the second vector leads the first one by an angle 

known as the phase angle. This means that the maximum of the second vector would occur

radians earlier than that of the first vector. Note that instead of maxima, any other cor-

responding points can be taken for finding the phase angle. In Eqs. (1.61) and (1.62) or in

Fig. 1.52 the two vectors are said to have a phase difference of 

Natural frequency. If a system, after an initial disturbance, is left to vibrate on its own,

the frequency with which it oscillates without external forces is known as its natural fre-

quency. As will be seen later, a vibratory system having n degrees of freedom will have,

in general, n distinct natural frequencies of vibration.

f.

f

f,OP
¡

1OP
¡

2

v.

x2 = A2 sin(vt + f)

x1 = A1 sin vt

v

vf = v/2p.
v

f =
1

t
=

v

2p

v

t =
2p

v

2pOP
¡

t.

OP
¡

2p
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Beats. When two harmonic motions, with frequencies close to one another, are added, the

resulting motion exhibits a phenomenon known as beats. For example, if

(1.63)

(1.64)

where is a small quantity, the addition of these motions yields

(1.65)

Using the relation

(1.66)

Eq. (1.65) can be rewritten as

(1.67)

This equation is shown graphically in Fig. 1.53. It can be seen that the resulting motion,

x(t), represents a cosine wave with frequency which is approximately equal to

and with a varying amplitude of Whenever the amplitude reaches a max-

imum, it is called a beat. The frequency at which the amplitude builds up and dies

down between 0 and 2X is known as beat frequency. The phenomenon of beats is often

observed in machines, structures, and electric power houses. For example, in machines and

structures, the beating phenomenon occurs when the forcing frequency is close to the nat-

ural frequency of the system (see Section 3.3.2).

Octave. When the maximum value of a range of frequency is twice its minimum value, it

is known as an octave band. For example, each of the ranges 75 150 Hz, 150 300 Hz, and

300 600 Hz can be called an octave band. In each case, the maximum and minimum val-

ues of frequency, which have a ratio of 2:1, are said to differ by an octave.

Decibel. The various quantities encountered in the field of vibration and sound (such

as displacement, velocity, acceleration, pressure, and power) are often represented

(d)
2X cos dt/2.v,

v + d/2,

x(t) = 2X cos 
dt

2
 cos+v +

d

2
* t

cos A + cos B = 2 cos+A + B

2
*  cos+A - B

2
*

x(t) = x1(t) + x2(t) = X[cos vt +  cos(v + d)t]

d

x2(t) = X cos(v + d)t

 x1(t) = X cos vt

P2

P1

O

x2

x1

A2

A1

x1  A1 sin vt

x2  A2 sin
(vt  f)

u  vt

f

v

u1  vt

u2  vt  f

f

v

FIGURE 1.52 Phase difference between two vectors.
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using the notation of decibel. A decibel (dB) is originally defined as a ratio of electric

powers:

(1.68)

where is some reference value of power. Since electric power is proportional to the

square of the voltage (X), the decibel can also be expressed as

(1.69)

where is a specified reference voltage. In practice, Eq. (1.69) is also used for express-

ing the ratios of other quantities such as displacements, velocities, accelerations, and

pressures. The reference values of in Eq. (1.69) are usually taken as 

for pressure and for acceleration.

1.11 Harmonic Analysis5

Although harmonic motion is simplest to handle, the motion of many vibratory systems is

not harmonic. However, in many cases the vibrations are periodic for example, the type

shown in Fig. 1.54(a). Fortunately, any periodic function of time can be represented by

Fourier series as an infinite sum of sine and cosine terms [1.36].

If x(t) is a periodic function with period its Fourier series representation is given by

(1.70)=
a0

2
+ a

q

n=1
(an  

cos nvt + bn  
sin nvt)

+ b1 
sin vt + b2  

sin 2 vt + Á

x(t) =
a0

2
+ a1 

cos vt + a2  
cos 2 vt + Á

t,

1 mg = 9.81 * 10-6 m/s2
2 * 10-5 N/m2X0

X0

dB = 10 log+ X

X0
*2

= 20 log+ X

X0
*

P0

dB = 10 log+ P

P0
*

x(t)

2X

*2X

0

x(t)

2X

Beat period,

tb +
2p
d

t

2X cos
dt

2

FIGURE 1.53 Phenomenon of beats.

5The harmonic analysis forms a basis for Section 4.2.

1.11.1
Fourier Series
Expansion
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where is the fundamental frequency and are constant

coefficients. To determine the coefficients and we multiply Eq. (1.70) by 

and respectively, and integrate over one period for example, from 0

to Then we notice that all terms except one on the right-hand side of the equation

will be zero, and we obtain

(1.71)

(1.72)

(1.73)

The physical interpretation of Eq. (1.70) is that any periodic function can be repre-

sented as a sum of harmonic functions. Although the series in Eq. (1.70) is an infinite sum,

we can approximate most periodic functions with the help of only a few harmonic func-

tions. For example, the triangular wave of Fig. 1.54(a) can be represented closely by

adding only three harmonic functions, as shown in Fig. 1.54(b).

Fourier series can also be represented by the sum of sine terms only or cosine terms

only. For example, the series using cosine terms only can be expressed as

(1.74)

where

(1.75)

(1.76)

and

(1.77)fn = tan-1+ bn

an
*

 dn = (an
2
+ bn

2)1/2

d0 = a0/2

x(t) = d0 + d1 cos(vt - f1) + d2 cos(2vt - f2) + Á

bn =
v

pL
2p/v

0
x(t) sin nvt dt =

2

tL
t

0
x(t) sin nvt dt

an =
v

pL
2p/v

0
x(t) cos nvt dt =

2

tL
t

0
x(t) cos nvt dt

a0 =
v

pL
2p/v

0
x(t) dt =

2

tL
t

0
x(t) dt

2p/v.
t = 2p/vsin nvt,

cos nvtbn,an

a0, a1, a2, Á , b1, b2, Áv = 2p/t

A

0

x(t)

2t 3t t

A

0

x(t)

2t 3t t

A

2

One-term approximation
Two-term approximation

Three-term approximation
Actual function

(a) (b)

tt

FIGURE 1.54 A periodic function.
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Gibbs  Phenomenon. When a periodic function is represented by a Fourier series, an

anomalous behavior can be observed. For example, Fig. 1.55 shows a triangular wave and

its Fourier series representation using a different number of terms. As the number of terms

(n) increases, the approximation can be seen to improve everywhere except in the vicinity

of the discontinuity (point P in Fig. 1.55). Here the deviation from the true waveform

becomes narrower but not any smaller in amplitude. It has been observed that the error in

amplitude remains at approximately 9 percent, even when This behavior is known

as Gibbs  phenomenon, after its discoverer.

k: q .

x(t)

t
P

n  4

n  6

n  8
Error

FIGURE 1.55 Gibbs  phenomenon.

1.11.2
Complex Fourier
Series

The Fourier series can also be represented in terms of complex numbers. By noting, from

Eqs. (1.41) and (1.42), that

(1.78)

and

(1.79)

and can be expressed as

(1.80)

and

(1.81)sin vt =
e

ivt
- e

-ivt

2i

cos vt =
e

ivt
+ e

-ivt

2

sin vtcos vt

e
-ivt

= cos vt - i sin vt

e
ivt

= cos vt + i sin vt
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Thus Eq. (1.70) can be written as

(1.82)

where By defining the complex Fourier coefficients and as

(1.83)

and

(1.84)

Eq. (1.82) can be expressed as

(1.85)

The Fourier coefficients can be determined, using Eqs. (1.71) to (1.73), as

(1.86) =
1

tL
 
t

0

x(t)e-invtdt

cn =
an - ibn

2
=

1

tL
 
t

0

x(t)[cos nvt - i sin nvt]dt

cn

x(t) = a
q

n=-q
 cneinvt

c-n =
an + ibn

2

cn =
an - ibn

2

c-ncnb0 = 0.

+ a
q

n=1
 b einvt¢an

2
-

ibn

2
+ e-invt¢an

2
+

ibn

2
r

= ei(0)vt¢a0

2
-

ib0

2

x(t) =
a0

2
+ a

q

n=1
 ban¢ einvt

+ e-invt

2
+ bn¢ einvt

- e-invt

2i
r

1.11.3
Frequency
Spectrum

The harmonic functions or in Eq. (1.70) are called the harmonics of

order n of the periodic function x(t). The harmonic of order n has a period These har-

monics can be plotted as vertical lines on a diagram of amplitude ( and or and

) versus frequency called the frequency spectrum or spectral diagram. Figure

1.56 shows a typical frequency spectrum.

(nv),fn

dnbnan

t/n.
bn sin nvtan cos nvt
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0
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2 3v 4v 5 vvv 6v 7v 8v

nf

FIGURE 1.56 Frequency spectrum of a typical periodic function of time.

1.11.4
Time- and
Frequency-
Domain
Representations

The Fourier series expansion permits the description of any periodic function using either

a time-domain or a frequency-domain representation. For example, a harmonic function

given by in time domain (see Fig. 1.57(a)) can be represented by the ampli-

tude and the frequency in the frequency domain (see Fig. 1.57(b)). Similarly, a periodic

function, such as a triangular wave, can be represented in time domain, as shown in

Fig. 1.57(c), or in frequency domain, as indicated in Fig. 1.57(d). Note that the amplitudes

and the phase angles corresponding to the frequencies can be used in place of the

amplitudes and for representation in the frequency domain. Using a Fourier integral

(considered in Section 14.9) permits the representation of even nonperiodic functions in

bnan

vnfndn

v

x(t) = A sin vt

x(t)

A

*A

x0

0 t

A

0

A sin (vt + f0)

(a) (b)

(d)

x(t)
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x0

0 t

x(v)

a0

a1

a2
a3 a4

0

a
n
 (coefficients of cosine terms in Eq. (1.70))

(c)

b1

b2
b3 b4

0

b
n
 (coefficients of sine terms in Eq. (1.70))

v1 , v v2 , 2v v3 , 3v v4 ,  4v

v1 , v v2 , 2v v3 , 3v v4 ,  4v

v
n

v
n

v
v

FIGURE 1.57 Representation of a function in time and frequency domains.
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either a time domain or a frequency domain. Figure 1.57 shows that the frequency-domain

representation does not provide the initial conditions. However, in many practical applica-

tions the initial conditions are often considered unnecessary and only the steady-state con-

ditions are of main interest.

1.11.5

Even and Odd

Functions

An even function satisfies the relation

(1.87)

In this case, the Fourier series expansion of x(t) contains only cosine terms:

(1.88)

where and are given by Eqs. (1.71) and (1.72), respectively. An odd function satis-

fies the relation

(1.89)

In this case, the Fourier series expansion of x(t) contains only sine terms:

(1.90)

where is given by Eq. (1.73). In some cases, a given function may be considered as even

or odd depending on the location of the coordinate axes. For example, the shifting of the

vertical axis from (a) to (b) or (c) in Fig. 1.58(i) will make it an odd or even function. This

means that we need to compute only the coefficients or Similarly, a shift in the time

axis from (d) to (e) amounts to adding a constant equal to the amount of shift. In the case

of Fig. 1.58(ii), when the function is considered as an odd function, the Fourier series

expansion becomes (see Problem 1.107):

(1.91)

On the other hand, if the function is considered an even function, as shown in Fig. 1.50(iii),

its Fourier series expansion becomes (see Problem 1.107):

(1.92)

Since the functions and represent the same wave, except for the location of the

origin, there exists a relationship between their Fourier series expansions also. Noting that

(1.93)x1+ t +
t

4
* = x2(t)

x2(t)x1(t)

x2(t) =
4A

p
a

q
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(-1)n+1

(2n - 1)
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2p(2n - 1)t

t

x1(t) =
4A

p
a

q

n=1

1

(2n - 1)
 sin 

2p(2n - 1)t

t

an.bn
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q
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bn sin nvt

x(- t) = -  x(t)

ana0

x(t) =
a0

2
+ a

q

n=1
an cos nvt

x(- t) = x(t)
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we find from Eq. (1.91),

(1.94)

Using the relation Eq. (1.94) can be expressed

as

(1.95) + cos 
2p(2n - 1)t

t

 sin 
2p(2n - 1)

4
r

 x1¢ t +
t

4
=

4A

p
a

q

n=1
b 1
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t

 cos 
2p(2n - 1)

4

sin(A + B) = sin A cos B +  cos A sin B,

 =
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p
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q
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+
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FIGURE 1.58 Even and odd functions.
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Since for and 

for Eq. (1.95) reduces to

(1.96)

which can be identified to be the same as Eq. (1.92).

x1+ t +
t

4
* =

4A

p

 a

q

n=1
 
(-1)n+1

(2n - 1)
 cos 

2p(2n - 1)t

t

n = 1, 2, 3, Á ,

sin [2p(2n - 1)/4] =  (-1)n+1n = 1, 2, 3, Á ,cos [2p(2n - 1)/4] = 0

1.11.6
Half-Range
Expansions

In some practical applications, the function x(t) is defined only in the interval 0 to as

shown in Fig. 1.59(a). In such a case, there is no condition of periodicity of the function,

since the function itself is not defined outside the interval 0 to However, we can extend

the function arbitrarily to include the interval to 0 as shown in either Fig. 1.59(b) or

Fig. 1.59(c). The extension of the function indicated in Fig. 1.59(b) results in an odd func-

tion, while the extension of the function shown in Fig. 1.59(c) results in an even

function, Thus the Fourier series expansion of yields only sine terms and that

of involves only cosine terms. These Fourier series expansions of and arex2(t)x1(t)x2(t)
x1(t)x2(t).

x1(t),

-t

t.

t

t

x1(t)

0

t

x2(t)

0*t t

*t t

t
t

x(t)

0

(a) Original function

(b) Extension as an odd function

(c) Extension as an even function

FIGURE 1.59 Extension of a
function for half-range expansions.
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known as half-range expansions [1.37]. Any of these half-range expansions can be used to

find x(t) in the interval 0 to t.

1.11.7
Numerical
Computation 
of Coefficients

For very simple forms of the function x(t), the integrals of Eqs. (1.71) to (1.73) can be eval-

uated easily. However, the integration becomes involved if x(t) does not have a simple

form. In some practical applications, as in the case of experimental determination of the

amplitude of vibration using a vibration transducer, the function x(t) is not available in the

form of a mathematical expression; only the values of x(t) at a number of points

are available, as shown in Fig. 1.60. In these cases, the coefficients and 

of Eqs. (1.71) to (1.73) can be evaluated by using a numerical integration procedure like

the trapezoidal or Simpson s rule [1.38].

Let s assume that are an even number of equidistant points over the

period with the corresponding values of x(t) given by 

respectively; then the application of the trapezoidal rule

gives the coefficients and (by setting ) as:6

(1.97)
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x2 = x(t2), Á , xN = x(tN),
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t1, t2, Á , tN

bnant1, t2, Á , tN

6
N Needs to be an even number for Simpson s rule but not for the trapezoidal rule. Equations (1.97) to (1.99)

assume that the periodicity condition, holds true.x0 = xN,

t

xN

tNtN 1
xN 1

t1 t2 t3
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t4
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t5
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t
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t  N t
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FIGURE 1.60 Values of the periodic function x(t) at discrete points t1, t2, Á , tN.



1.11 HARMONIC ANALYSIS 73

E X A M P L E  1 . 1 9
Fourier Series Expansion

Determine the Fourier series expansion of the motion of the valve in the cam-follower system shown

in Fig. 1.61.

Solution: If y(t) denotes the vertical motion of the pushrod, the motion of the valve, x(t), can be

determined from the relation:

or

(E.1)

where

(E.2)

and the period is given by By defining

A =

Yl2

l1

t =

2p

v
.

y(t) = Y
t

t
;   0 t t

x(t) =

l2

l1
 y(t)

tan u =

y(t)

l1
=

x(t)

l2

Pushrod

Roller
follower

y(t)

y(t)

0

Y

x(t)

l1

Rocker arm

l2

t

Valve
spring

Valve

2t 3t

O

v t

u

FIGURE 1.61 Cam-follower system.
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x(t) can be expressed as

(E.3)

Equation (E.3) is shown in Fig. 1.54(a). To compute the Fourier coefficients and we use Eqs.

(1.71) to (1.73):

(E.4)

(E.5)

(E.6)

Therefore the Fourier series expansion of x(t) is

(E.7)

The first three terms of the series are shown plotted in Fig. 1.54(b). It can be seen that the approxi-

mation reaches the sawtooth shape even with a small number of terms.
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E X A M P L E  1 . 2 0
Numerical Fourier Analysis

The pressure fluctuations of water in a pipe, measured at 0.01-second intervals, are given in Table

1.1. These fluctuations are repetitive in nature. Make a harmonic analysis of the pressure fluctuations

and determine the first three harmonics of the Fourier series expansion.
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Solution: Since the given pressure fluctuations repeat every 0.12 sec, the period is sec and

the circular frequency of the first harmonic is radians per 0.12 sec or 

rad/sec. As the number of observed values in each wave (N) is 12, we obtain from Eq. (1.97)

(E.1)

The coefficients and can be determined from Eqs. (1.98) and (1.99):

(E.2)

(E.3)

The computations involved in Eqs. (E.2) and (E.3) are shown in Table 1.2. From these calculations,

the Fourier series expansion of the pressure fluctuations p(t) can be obtained (see Eq. 1.70):

(E.4) - 2333.3 sin 157.08t + Á  N/m2

 + 1416.7 cos 104.72t + 3608.3 sin 104.72t - 5833.3 cos 157.08t

p(t) = 34083.3 - 26996.0 cos 52.36t + 8307.7 sin 52.36t

bn =
2

N
 a

N

i=1
 pi sin 

2npti

t

=
1

6
 a

12

i=1
 pi sin 

2npti

0.12

an =
2

N
 a

N

i=1
 pi cos 

2npti

t

=
1

6
 a

12

i=1
 pi cos 

2npti

0.12

bnan

a0 =
2

N
 a

N

i=1
 pi =

1

6
 a

12

i=1
 pi = 68166.7

v = 2p/0.12 = 52.362p
t = 0.12

TABLE 1.1

Time Station, i Time (sec), ti Pressure (kN/m2), pi

0 0 0

1 0.01 20

2 0.02 34

3 0.03 42

4 0.04 49

5 0.05 53

6 0.06 70

7 0.07 60

8 0.08 36

9 0.09 22

10 0.10 16

11 0.11 7

12 0.12 0
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TABLE 1.2

n * 1 n * 2 n * 3

i ti pi
pi cos 

2Pti

0.12
pi sin 

2Pti

0.12
pi cos 

4Pti

0.12
pi sin 

4Pti

0.12
pi cos 

6Pti

0.12
pi sin 

6Pti

0.12

1 0.01 20000 17320 10000 10000 17320 0 20000

2 0.02 34000 17000 29444 -17000 29444 -34000 0

3 0.03 42000 0 42000 -42000 0 0 -42000

4 0.04 49000 -24500 42434 -24500 -42434 49000 0

5 0.05 53000 -45898 26500 26500 -45898 0 53000

6 0.06 70000 -70000 0 70000 0 -70000 0

7 0.07 60000 -51960 -30000 30000 51960 0 -60000

8 0.08 36000 -18000 -31176 -18000 31176 36000 0

9 0.09 22000 0 -22000 -22000 0 0 22000

10 0.10 16000 8000 -13856 -8000 -13856 -16000 0

11 0.11 7000 6062 -3500 3500 -6062 0 -7000

12 0.12 0 0 0 0 0 0 0

( )a
12

i=1

409000 -161976 49846 8500 21650 -35000 -14000

( )
1

6
 a

12

i=1

68166.7 -26996.0 8307.7 1416.7 3608.3 -5833.3 -2333.3

*

1.12 Examples Using MATLAB7

Graphical Representation of Fourier Series Using MATLAB

7The source codes of all MATLAB programs are given at the Companion Website.

E X A M P L E  1 . 2 1
Plot the periodic function

(E.1)

and its Fourier series representation with four terms

(E.2)
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Solution: A MATLAB program is written to plot Eqs. (E.1) and (E.2) with different numbers of

terms as shown below.

%ex1_21.m

%plot the function x(t) = A * t / tau

A = 1;

w = pi;

tau = 2;

for i = 1: 101

t(i) = tau * (i-1)/100;

x(i) = A * t(i) / tau;

end

subplot(231);

plot(t,x);

ylabel('x(t)');

xlabel('t');

title('x(t) = A*t/tau');

for i = 1: 101

x1(i) = A / 2;

end

subplot(232);

plot(t,x1);

xlabel('t');

1
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0
0 1

x(t) + A*t/tau

t

2

x
(t
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0
0 1
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t
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0

*0.5
0 1
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t

2

1

0.8

0.6

0.4

0.2

0
0 1

Four terms

t

2

1

0.8

0.6

0.4

0.2

0
0 1

Two terms

t

2

Equations (E.1) and (E.2) with different numbers of terms.
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title('One term');

for i = 1: 101

x2(i) = A/2 - A * sin(w*t(i)) / pi;

end

subplot(233);

plot(t,x2);

xlabel('t');

title('Two terms');

for i = 1: 101

x3(i) = A/2 - A * sin(w*t(i)) / pi - A * sin(2*w*t(i)) / (2*pi);

end

subplot(234);

plot(t,x3);

ylabel('x(t)');

xlabel('t');

title('Three terms');

for i = 1: 101

t(i) = tau * (i-1)/100;

x4(i) = A/2 - A * sin(w*t(i)) / pi - A * sin(2*w*t(i)) / (2*pi) 

- A * sin(3*w*t(i)) / (3*pi);

end

subplot(235);

plot(t,x4);

xlabel('t');

title('Four terms');

*

E X A M P L E  1 . 2 2
Graphical Representation of Beats

A mass is subjected to two harmonic motions given by and 

with rad/sec, and rad/sec. Plot the resulting motion of the mass

using MATLAB and identify the beat frequency.

Solution: The resultant motion of the mass, x(t), is given by

(E.1)

The motion can be seen to exhibit the phenomenon of beats with a beat frequency

rad/sec. Equation (E.1) is plotted using MATLAB as shown below.

% ex1_22.m

% Plot the Phenomenon of beats

A = 1;

w = 20;

delta = 1;

for i = 1: 1001

t(i) = 15 * (i 1)/1000;

x(i) = 2 * A * cos (delta*t(i)/2) * cos ((w + delta/2) *t(i));

end

plot (t,x);

xlabel ('t');

ylabel ('x(t)');

title ('Phenomenon of beats');

vb = (v + d) - (v) = d = 1

= 2X cos 
dt

2
 cos+v +

d

2
* t

= X cos vt + X cos(v + d)t

x(t) = x1(t) + x2(t)

d = 1X = 1 cm, v = 20(v + d) t
x2(t) = X cosx1(t) = X cos vt
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E X A M P L E  1 . 2 3
Numerical Fourier Analysis Using MATLAB

Conduct a harmonic analysis of the pressure fluctuations given in Table 1.1 on page 75 and deter-

mine the first five harmonics of the Fourier series expansion.

Solution: To find the first five harmonics of the pressure fluctuations (i.e., ),

a general-purpose MATLAB program is developed for the harmonic analysis of a function x(t) using

Eqs. (1.97) to (1.99). The program, named Program1.m, requires the following input data:

n number of equidistant points at which the values of x(t) are known

m number of Fourier coefficients to be computed 

time time period of the function x(t)

x array of dimension n, containing the known values of 

t array of dimension n, containing the known values of 

The following output is generated by the program:

of Eq. (1.97)

i, a(i), b(i); i = 1, 2, Á , m

azero = a0

t ; t(i) = ti=

x(t) ; x(i) = x(ti)=

=

=

=

a0, a1, Á , a5, b1, Á , b5
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where a(i) and b(i) denote the computed values of and given by Eqs. (1.98) and (1.99),

respectively.

>> program1

Fourier series expansion of the function x(t)

Data:

Number of data points in one cycle = 12

Number of Fourier Coefficients required = 5

Time period = 1.200000e 001

Station i Time at station i: t(i) x(i) at t(i)

1 1.000000e 002 2.000000e+004

2 2.000000e 002 3.400000e+004

3 3.000000e 002 4.200000e+004

4 4.000000e 002 4.900000e+004

5 5.000000e 002 5.300000e+004

6 6.000000e 002 7.000000e+004

7 7.000000e 002 6.000000e+004

8 8.000000e 002 3.600000e+004

9 9.000000e 002 2.200000e+004

10 1.000000e 001 1.600000e+004

11 1.100000e 001 7.000000e+003

12 1.200000e 001 0.000000e+000

Results of Fourier analysis:

azero=6.816667e+004

values of i a(i) b(i)

1 2.699630e+004 8.307582e+003

2 1.416632e+003 3.608493e+003

3 5.833248e+003 2.333434e+003

4 5.834026e+002 2.165061e+003

5 2.170284e+003 6.411708e+002

*

biai

1.13 Vibration Literature

The literature on vibrations is large and diverse. Several textbooks are available [1.39], and

dozens of technical periodicals regularly publish papers relating to vibrations. This is pri-

marily because vibration affects so many disciplines, from science of materials to machin-

ery analysis to spacecraft structures. Researchers in many fields must be attentive to

vibration research.

The most widely circulated journals that publish papers relating to vibrations are

ASME Journal of Vibration and Acoustics; ASME Journal of Applied Mechanics; Journal

of Sound and Vibration; AIAA Journal; ASCE Journal of Engineering Mechanics;

Earthquake Engineering and Structural Dynamics; Bulletin of the Japan Society of

Mechanical Engineers; International Journal of Solids and Structures; International

Journal for Numerical Methods in Engineering; Journal of the Acoustical Society of

America; Sound and Vibration; Vibrations, Mechanical Systems and Signal Processing;

International Journal of Analytical and Experimental Modal Analysis; JSME

International Journal Series III Vibration Control Engineering; and Vehicle System

Dynamics. Many of these journals are cited in the chapter references.
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In addition, Shock and Vibration Digest, Applied Mechanics Reviews, and Noise and

Vibration Worldwide are monthly abstract journals containing brief discussions of nearly

every published vibration paper. Formulas and solutions in vibration engineering can be

readily found in references [1.40 1.42].

CHAPTER SUMMARY

In this chapter, we presented the fundamental concepts of vibration along with a brief outline of the

history and the importance of the study of vibration. We introduced the concepts of degree of free-

dom, discrete and continuous systems, and the different classes of vibration. We outlined the basic

steps involved in the vibration analysis of a system. We introduced the fundamental type of vibration,

namely harmonic motion, along with the associated terminology. We presented harmonic analysis

and Fourier series representation of periodic functions as well as numerical determination of Fourier

coefficients with examples.

At this point, the reader should be able to achieve the objectives stated at the beginning of the

chapter. To help the reader, review questions in the form of questions requiring brief answers, true or

false statements, fill in the blanks, multiple choices, and matching of statements are given for self

testing with answers available at the Companion Website. Several problems involving different lev-

els of difficulty in applying the basic concepts presented in the chapter are also given. The answers to

selected problems can be found at the end of the book.
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REVIEW QUESTIONS

1.1 Give brief answers to the following:

1. Give two examples each of the bad and the good effects of vibration.

2. What are the three elementary parts of a vibrating system?

3. Define the number of degrees of freedom of a vibrating system.

4. What is the difference between a discrete and a continuous system? Is it possible to solve

any vibration problem as a discrete one?

5. In vibration analysis, can damping always be disregarded?
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6. Can a nonlinear vibration problem be identified by looking at its governing differential

equation?

7. What is the difference between deterministic and random vibration? Give two practical

examples of each.

8. What methods are available for solving the governing equations of a vibration problem?

9. How do you connect several springs to increase the overall stiffness?

10. Define spring stiffness and damping constant.

11. What are the common types of damping?

12. State three different ways of expressing a periodic function in terms of its harmonics.

13. Define these terms: cycle, amplitude, phase angle, linear frequency, period, and natural

frequency.

14. How are and f related to each other?

15. How can we obtain the frequency, phase, and amplitude of a harmonic motion from the

corresponding rotating vector?

16. How do you add two harmonic motions having different frequencies?

17. What are beats?

18. Define the terms decibel and octave.

19. Explain Gibbs  phenomenon.

20. What are half-range expansions?

1.2 Indicate whether each of the following statements is true or false:

1. If energy is lost in any way during vibration, the system can be considered to be damped.

2. The superposition principle is valid for both linear and nonlinear systems.

3. The frequency with which an initially disturbed system vibrates on its own is known as

natural frequency.

4. Any periodic function can be expanded into a Fourier series.

5. A harmonic motion is a periodic motion.

6. The equivalent mass of several masses at different locations can be found using the

equivalence of kinetic energy.

7. The generalized coordinates are not necessarily Cartesian coordinates.

8. Discrete systems are same as lumped parameter systems.

9. Consider the sum of harmonic motions, with

and The amplitude A is given by 30.8088.

10. Consider the sum of harmonic motions, with

and The phase angle is given by 1.57 rad.

1.3 Fill in the blank with the proper word:

1. Systems undergo dangerously large oscillations at _____.

2. Undamped vibration is characterized by no loss of _____.

3. A vibratory system consists of a spring, damper, and _____.

4. If a motion repeats after equal intervals of time, it is called a _____ motion.

5. When acceleration is proportional to the displacement and directed toward the mean

position, the motion is called _____ harmonic.

6. The time taken to complete one cycle of motion is called the _____ of vibration.

7. The number of cycles per unit time is called the _____ of vibration.

8. Two harmonic motions having the same frequency are said to be _____.

ax2(t) = 20 cos(vt + 1).x1(t) = 15 cos vt
x(t) = x1(t) + x2(t) = A cos(vt + a),

x2(t) = 20 cos(vt + 1).x1(t) = 15 cos vt
x(t) = x1(t) + x2(t) = A cos(vt + a),

t, v,
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9. The angular difference between the occurrence of similar points of two harmonic

motions is called _____.

10. Continuous or distributed systems can be considered to have _____ number of degrees of

freedom.

11. Systems with a finite number of degrees of freedom are called _____ systems.

12. The number of degrees of freedom of a system denotes the minimum number of independent

_____ necessary to describe the positions of all parts of the system at any instant of time.

13. If a system vibrates due to initial disturbance only, it is called _____ vibration.

14. If a system vibrates due to an external excitation, it is called _____ vibration.

15. Resonance denotes the coincidence of the frequency of external excitation with a _____

frequency of the system.

16. A function f(t) is called an odd function if _____.

17. The _____ range expansions can be used to represent functions defined only in the inter-

val 0 to 

18. _____ analysis deals with the Fourier series representation of periodic functions.

19. The rotational speed of 1000 rpm (revolutions per minute) is equivalent to _____

radians/sec.

20. When the speed of a turbine is 6000 rpm, it takes _____ seconds for the turbine to com-

plete one revolution.

1.4 Select the most appropriate answer from the multiple choices given:

1. The world s first seismograph was invented in

(a) Japan (b) China (c) Egypt

2. The first experiments on simple pendulums were conducted by

(a) Galileo (b) Pythagoras (c) Aristotle

3. The Philosophiae Naturalis Principia Mathematica was published by

(a) Galileo (b) Pythagoras (c) Newton

4. Mode shapes of plates, by placing sand on vibrating plates, were first observed by

(a) Chladni (b) D Alembert (c) Galileo

5. The thick beam theory was first presented by

(a) Mindlin (b) Einstein (c) Timoshenko

6. The number of degrees of freedom of a simple pendulum is:

(a) 0 (b) 1 (c) 2

7. Vibration can be classified in

(a) one way (b) two ways (c) several ways

8. Gibbs  phenomenon denotes an anomalous behavior in the Fourier series representation of a

(a) harmonic function (b) periodic function (c) random function

9. The graphical representation of the amplitudes and phase angles of the various frequency

components of a periodic function is known as a

(a) spectral diagram (b) frequency diagram (c) harmonic diagram

10. When a system vibrates in a fluid medium, the damping is

(a) viscous (b) Coulomb (c) solid

11. When parts of a vibrating system slide on a dry surface, the damping is

(a) viscous (b) Coulomb (c) solid

12. When the stress-strain curve of the material of a vibrating system exhibits a hysteresis

loop, the damping is

(a) viscous (b) Coulomb (c) solid

t.
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13. The equivalent spring constant of two parallel springs with stiffnesses and is

(a) (b) (c)

14. The equivalent spring constant of two series springs with stiffnesses and is

(a) (b) (c)

15. The spring constant of a cantilever beam with an end mass m is

(a) (b) (c)

16. If function f(t) is said to be

(a) even (b) odd (c) continuous

1.5 Match the following:

1. Pythagoras (582 507 B.C.) a. published a book on the theory of sound

2. Euclid (300 B.C.) b. first person to investigate musical sounds on a 

scientific basis

3. Zhang Heng (132 A.D.) c. wrote a treatise called Introduction to Harmonics

4. Galileo (1564 1642) d. founder of modern experimental science

5. Rayleigh (1877) e. invented the world s first seismograph

1.6 Match the following:

1. Imbalance in diesel engines a. can cause failure of turbines and aircraft engines

2. Vibration in machine tools b. cause discomfort in human activityduring metal 

cutting

3. Blade and disk vibration c. can cause wheels of locomotives to rise off the track

4. Wind-induced vibration d. can cause failure of bridges

5. Transmission of vibration e. can give rise to chatter

1.7 Consider four springs with the spring constants:

Match the equivalent spring constants:

1. and are in parallel a. 18.9189 lb/in.

2. and are in series b. 370.0 lb/in.

3. and are in parallel  c. 11.7647 lb/in.

4. and are in parallel  d. 300.0 lb/in.

5. and are in parallel  e. 70.0 lb/in.

6. is in series with  f. 170.0 lb/in.

7. and are in parallel  g. 350.0 lb/in.

8. and are in series h. 91.8919 lb/in.k234k1

(keq = k234)k4k2, k3,
k4k123

(keq = k123)k3k1, k2,

(keq = k34)k4k3

(keq = k12)k2k1

k4k1, k2, k3,

k4k1, k2, k3,

k1 = 20 lb/in., k2 = 50 lb/in., k3 = 100 lb/in., k4 = 200 lb/in.

f(- t) = f(t),

Wl3

3EI

l3

3EI

3EI

l3

1

k1
+

1

k2

1

1

k1
+

1

k2

k1 + k2

k2k1

1

k1
+

1

k2

1

1

k1
+

1

k2

k1 + k2

k2k1
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PROBLEMS

Section 1.4 Basic Concepts of Vibration and 

Section 1.6 Vibration Analysis Procedure

1.1* A study of the response of a human body subjected to vibration/shock is important in many

applications. In a standing posture, the masses of head, upper torso, hips, and legs and the elas-

ticity/damping of neck, spinal column, abdomen, and legs influence the response characteris-

tics. Develop a sequence of three improved approximations for modeling the human body.

1.2* Figure 1.54 shows a human body and a restraint system at the time of an automobile collision

[1.47]. Suggest a simple mathematical model by considering the elasticity, mass, and damp-

ing of the seat, human body, and restraints for a vibration analysis of the system.

*The asterisk denotes a design-type problem or a problem with no unique answer.

Windshield

Instrument
panel

Slant
footboard

Impact
forceFloor

Seat
Restraint
belts

FIGURE 1.62 A human body and a restraint system.

1.3* A reciprocating engine is mounted on a foundation as shown in Fig. 1.63. The unbalanced

forces and moments developed in the engine are transmitted to the frame and the foundation.

An elastic pad is placed between the engine and the foundation block to reduce the transmis-

sion of vibration. Develop two mathematical models of the system using a gradual refine-

ment of the modeling process.

1.4* An automobile moving over a rough road (Fig. 1.64) can be modeled considering 

(a) weight of the car body, passengers, seats, front wheels, and rear wheels; (b) elasticity of
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tires (suspension), main springs, and seats; and (c) damping of the seats, shock absorbers,

and tires. Develop three mathematical models of the system using a gradual refinement in the

modeling process.

Frame

Reciprocating
engine

Foundation
block

Bolts

Soil

Elastic pad

FIGURE 1.63 A reciprocating engine on a foundation.

FIGURE 1.64 An automobile moving on a
rough road.

1.5* The consequences of a head-on collision of two automobiles can be studied by considering

the impact of the automobile on a barrier, as shown in Fig. 1.65. Construct a mathematical

model by considering the masses of the automobile body, engine, transmission, and suspen-

sion and the elasticity of the bumpers, radiator, sheet metal body, driveline, and engine

mounts.

FIGURE 1.65 An automobile colliding with a barrier.
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1.6* Develop a mathematical model for the tractor and plow shown in Fig. 1.66 by considering

the mass, elasticity, and damping of the tires, shock absorbers, and plows (blades).

Shock absorber

Plow

FIGURE 1.66 A tractor and plow.

Section 1.7 Spring Elements

1.7 Determine the equivalent spring constant of the system shown in Fig. 1.67.

k4

k5

k3k3

k2

k1k1

FIGURE 1.67 Springs in
series-parallel.

1.8 Consider a system of two springs, with stiffnesses and arranged in parallel as shown in

Fig. 1.68. The rigid bar to which the two springs are connected remains horizontal when the

k2,k1
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force F is zero. Determine the equivalent spring constant of the system that relates the

force applied (F) to the resulting displacement (x) as

Hint: Because the spring constants of the two springs are different and the distances and 

are not the same, the rigid bar will not remain horizontal when the force F is applied.

1.9 In Fig. 1.69, find the equivalent spring constant of the system in the direction of u.

l2l1

F = kex

(ke)

l1

k1 k2

x

F

l2

FIGURE 1.68 Parallel springs subjected to load.

kt1

kt2

k3

k1

k2

l2

l1

u

FIGURE 1.69

1.10 Find the equivalent torsional spring constant of the system shown in Fig. 1.70. Assume that

and are torsional and and are linear spring constants.k6k5k4k1, k2, k3,
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1.11 A machine of mass is mounted on a simply supported steel beam of length

having a rectangular cross section and Young s 

modulus To reduce the vertical deflection of the beam, a spring of

stiffness k is attached at mid-span, as shown in Fig. 1.71. Determine the value of k needed to

reduce the deflection of the beam by

a. 25 percent of its original value.

b. 50 percent of its original value.

c. 75 percent of its original value.

Assume that the mass of the beam is negligible.

E = 2.06 * 1011 N/m2.

(depth = 0.1 m, width = 1.2 m)l = 2 m

m = 500 kg

k5 k6

k4

k3

k2

k1

R
u

FIGURE 1.70

k

m

l

FIGURE 1.71

1.12 A bar of length L and Young s modulus E is subjected to an axial force. Compare the spring

constants of bars with cross sections in the form of a solid circle (of diameter d), square (of

side d) and hollow circle (of mean diameter d and wall thickness ). Determine which

of these cross sections leads to an economical design for a specified value of axial stiffness

of the bar.

t = 0.1d
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1.13 A cantilever beam of length L and Young s modulus E is subjected to a bending force at its

free end. Compare the spring constants of beams with cross sections in the form of a solid

circle (of diameter d), square (of side d), and hollow circle (of mean diameter d and wall

thickness ). Determine which of these cross sections leads to an economical design

for a specified value of bending stiffness of the beam.

1.14 An electronic instrument, weighing 200 lb, is supported on a rubber mounting whose force-

deflection relationship is given by where the force (F) and the

deflection (x) are in pounds and inches, respectively. Determine the following:

a. Equivalent linear spring constant of the mounting at its static equilibrium position.

b. Deflection of the mounting corresponding to the equivalent linear spring constant.

1.15 The force-deflection relation of a steel helical spring used in an engine is found experimen-

tally as where the force (F) and deflection (x) are mea-

sured in pounds and inches, respectively. If the spring undergoes a steady deflection of 0.5 in.

during the operation of the engine, determine the equivalent linear spring constant of the

spring at its steady deflection.

1.16 Four identical rigid bars each of length a are connected to a spring of stiffness k to form

a structure for carrying a vertical load P, as shown in Figs. 1.72(a) and (b). Find the equiva-

lent spring constant of the system for each case, disregarding the masses of the bars and

the friction in the joints.

keq,

F(x) = 200 x + 50  x2
+ 10 x3,

F(x) = 800 x + 40 x3,

t = 0.1d

b

P

(a)

k

a

P

a

(b)

k

b

FIGURE 1.72

1.17 The tripod shown in Fig. 1.73 is used for mounting an electronic instrument that finds the

distance between two points in space. The legs of the tripod are located symmetrically

about the mid-vertical axis, each leg making an angle with the vertical. If each leg has a

length l and axial stiffness k, find the equivalent spring stiffness of the tripod in the vertical

direction.

a
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1.18 The static equilibrium position of a massless rigid bar, hinged at point O and connected with

springs and is shown in Fig. 1.74. Assuming that the displacement (x) resulting from

the application of a force F at point A is small, find the equivalent spring constant of the sys-

tem, that relates the applied force F to the displacement x as F = k ex.ke,

k2,k1

FIGURE 1.73

F O

k2 * k

k1 * 2k

x

A

l

4

l

4

l

2

l

4

FIGURE 1.74 Rigid bar connected by springs.

1.19 Figure 1.75 shows a system in which the mass m is directly connected to the springs with

stiffnesses and while the spring with stiffness or comes into contact with the mass

based on the value of the displacement of the mass. Determine the variation of the spring

force exerted on the mass as the displacement of the mass (x) varies.

1.20 Figure 1.76 shows a uniform rigid bar of mass m that is pivoted at point O and connected by

springs of stiffnesses and Considering a small angular displacement of the rigid bar

about the point O, determine the equivalent spring constant associated with the restoring

moment.

uk2.k1

k4k 3k2k 1
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1.21 Figure 1.77 shows a U-tube manometer open at both ends and containing a column of liquid

mercury of length l and specific weight Considering a small displacement x of the

manometer meniscus from its equilibrium position (or datum), determine the equivalent

spring constant associated with the restoring force.

g.

k2

k1

mg

O

l 
4

l 
2

l

FIGURE 1.76 Rigid bar connected by
springs.

x

Datum

Area, A

x

FIGURE 1.77 U-tube
manometer.

mk3 k4

k1 k2

d2

x0

d3 d3 d4

FIGURE 1.75 Mass connected by springs.
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1.22 An oil drum of diameter d and mass m floats in a bath of sea water of density as shown in

Fig. 1.78. Considering a small displacement x of the oil drum from its static equilibrium

position, determine the equivalent spring constant associated with the restoring force.

rw

x

Static
equilibrium
position

mg

d

l

FIGURE 1.78 Oil drum floating in sea water.

1.23 Find the equivalent spring constant and equivalent mass of the system shown in Fig. 1.79

with references to Assume that the bars AOB and CD are rigid with negligible mass.

1.24 Find the length of the equivalent uniform hollow shaft of inner diameter d and thickness t

that has the same axial spring constant as that of the solid conical shaft shown in Fig. 1.80.

u.

m1 m2

d

m

D

C

BA O

yLiquid of
density r

l1
l3

kt

k2

k1

k3

l2

u

FIGURE 1.79
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1.25 Figure 1.81 shows a three-stepped bar fixed at one end and subjected to an axial force F at the

other end. The length of step i is and its cross sectional area is All the steps

are made of the same material with Young s modulus 

a. Find the spring constant (or stiffness) of step i in the axial direction 

b. Find the equivalent spring constant (or stiffness) of the stepped bar, in the axial direc-

tion so that 

c. Indicate whether the steps behave as series or parallel springs.

F = k eqx.
k eq,

(i = 1, 2, 3).k i

Ei = E, i = 1, 2, 3.
Ai, i = 1, 2, 3.li

k

k

k k

k

k

F

FIGURE 1.82 Springs connected in series-parallel

A1 A2 A3 x

F

l1 l2 l3

FIGURE 1.81 A stepped bar subjected to axial force

D

l

d

FIGURE 1.80

1.26 Find the equivalent spring constant of the system shown in Fig. 1.82.

1.27 Figure 1.83 shows a three-stepped shaft fixed at one end and subjected to a torsional moment

T at the other end. The length of step i is and its diameter is All the steps are

made of the same material with shear modulus 

a. Find the torsional spring constant (or stiffness) of step i (i = 1, 2, 3).kti

Gi = G, i = 1, 2, 3.
Di, i = 1, 2, 3.li
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1.28 The force-deflection characteristic of a spring is described by where the

force (F) is in Newtons and the deflection (x) is in millimeters. Find (a) the linearized spring

constant at and (b) the spring forces at and using the lin-

earized spring constant. Also find the error in the spring forces found in (b).

1.29 Figure 1.84 shows an air spring. This type of spring is generally used for obtaining very low

natural frequencies while maintaining zero deflection under static loads. Find the spring con-

stant of this air spring by assuming that the pressure p and volume v change adiabatically

when the mass m moves.

x = 11 mmx = 9 mmx = 10 mm

F = 500x + 2x3,

Air
Pressure * p
Volume * v

Cross-sectional area * A

x(t)

m

FIGURE 1.84

T
u

D1 D2 D3

l1 l2 l3

FIGURE 1.83 A stepped shaft subjected to torsional
moment.

Hint: for an adiabatic process, where is the ratio of specific heats. For air,

1.30 Find the equivalent spring constant of the system shown in Fig. 1.85 in the direction of the

load P.

1.31 Derive the expression for the equivalent spring constant that relates the applied force F to the

resulting displacement x of the system shown in Fig. 1.86. Assume the displacement of the

link to be small.

1.32 The spring constant of a helical spring under axial load is given by

k =
Gd4

8ND3

g = 1.4.

gpvg = constant

b. Find the equivalent torsional spring constant (or stiffness) of the stepped shaft, so that

c. Indicate whether the steps behave as series or parallel torsional springs.

T = kteq
u.

kteq
,
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where G is the shear modulus, d is the wire diameter, D is the coil diameter, and N is the

number of turns. Find the spring constant and the weight of a helical spring made of steel for

the following data: 

1.33 Two helical springs, one made of steel and the other made of aluminum, have identical val-

ues of d and D. (a) If the number of turns in the steel spring is 10, determine the number of

turns required in the aluminum spring whose weight will be same as that of the steel spring,

(b) Find the spring constants of the two springs.

D = 0.2 m, d = 0.005 m, N = 10.

P

k5

u1

u2

u3

u4

k9

k4k2

k1

k6

k7

k3

k8

FIGURE 1.85

k1 * k

k2 * 2 k

k3 * 3k F x

l2 *
2l 

3

l1 *
l 

3

l

FIGURE 1.86 Rigid bar connected by springs.
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1.34 Figure 1.87 shows three parallel springs, one with stiffness and each of the other two

with stiffness The spring with stiffness has a length l and each of the springs with

stiffness has a length of Find the force-deflection characteristic of the system.l - a.k2

k1k2 = k.
k1 = k

S1

S2

W

(a)

S1 S2

W

(b)

FIGURE 1.88

k2 * k k1 * k k2 * k

x

F

a

l

FIGURE 1.87 Nonlinear behavior of linear springs.

1.35* Design an air spring using a cylindrical container and a piston to achieve a spring constant of

75 lb/in. Assume that the maximum air pressure available is 200 psi.

1.36 The force (F)-deflection (x) relationship of a nonlinear spring is given by

where a and b are constants. Find the equivalent linear spring constant when the deflection is

0.01 m with and 

1.37 Two nonlinear springs, and are connected in two different ways as indicated in Fig.

1.88. The force, in spring is related to its deflection as

where and are constants. If an equivalent linear spring constant, is defined by

where x is the total deflection of the system, find an expression for in each

case.

keqW = keqx,

keq,biai

Fi = aixi + bixi
3,   i = 1, 2

(xi)SiFi,
S2,S1

b = 40 * 106 N/m3.a = 20,000 N/m

F = ax + bx3
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1.38* Design a steel helical compression spring to satisfy the following requirements:

Spring stiffness 

Fundamental natural frequency of vibration 

Spring index 

Number of active turns 

The stiffness and fundamental natural frequency of the spring are given by [1.43]:

where modulus, diameter, diameter, of the

spring, and due to gravity.

1.39 Find the spring constant of the bimetallic bar shown in Fig. 1.89 in axial motion.

g = acceleration

W = weightD = coild = wireG = shear

k =
Gd4

8D3N
 and f1 =

1

2A
kg

W

(N) Ú 10.

(D/d) Ú 6

(f1) Ú 0.4 Hz

(k) Ú 8000 N/mm

0.5 m

x

y

2 cm

0.5 cm

Steel,

E * 207 + 109 Pa

Aluminum,

E * 83 + 109 Pa

FIGURE 1.89

1.40 Consider a spring of stiffness k stretched by a distance from its free length. One end of the

spring is fixed at point O and the other end is connected to a roller as shown in Fig. 1.90. The

x0

A

O

k

B

x

FIGURE 1.90 One end of
spring with lateral movement.
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roller is constrained to move in the horizontal direction with no friction. Find the force (F)-

displacement (x) relationship of the spring when the roller is moved by a horizontal distance

x to position B. Discuss the resulting force-displacement relation and identify the stiffness

constant along the direction of x.

1.41 One end of a helical spring is fixed and the other end is subjected to five different tensile

forces. The lengths of the spring measured at various values of the tensile forces are given

below:

k
'

Tensile force F (N) 0 100 250 330 480 570

Total length of the spring (mm) 150 163 183 194 214 226

Determine the force-deflection relation of the helical spring.

1.42 A tapered solid steel propeller shaft is shown in Fig. 1.91. Determine the torsional spring

constant of the shaft.

0.1
m0.2 m

1 m

T

Steel, G * 80 + 109 Pa

FIGURE 1.91

1.43 A composite propeller shaft, made of steel and aluminum, is shown in Fig. 1.92.

a. Determine the torsional spring constant of the shaft.

b. Determine the torsional spring constant of the composite shaft when the inner diameter of

the aluminum tube is 5 cm instead of 10 cm.

1.44 Consider two helical springs with the following characteristics:

Spring 1: material steel; number of turns 10; mean coil diameter 12 in.; wire diameter

2 in.; free length 15 in.; shear 

Spring 2: material aluminum; number of turns 10; mean coil diameter 10 in.; wire

diameter 1 in.; free length 15 in.; shear 

Determine the equivalent spring constant when (a) spring 2 is placed inside spring 1, and (b)

spring 2 is placed on top of spring 1.

modulus 4 * 10
6 psi.

modulus 12 * 10
6 psi.
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1.45 Solve Problem 1.44 by assuming the wire diameters of springs 1 and 2 to be 1.0 in. and 0.5

in. instead of 2.0 in. and 1.0 in., respectively.

1.46 The arm AD of the excavator shown in Fig. 1.93 can be approximated as a steel tube of outer

diameter 10 in., inner diameter 9.5 in., and length 100 in. with a viscous damping coefficient

of 0.4. The arm DE can be approximated as a steel tube of outer diameter 7 in., inner diame-

ter 6.5 in., and length 75 in. with a viscous damping coefficient of 0.3. Estimate the equiva-

lent spring constant and equivalent damping coefficient of the excavator, assuming that the

base AC is fixed.

2
5
 c

m

1
5
 c

m

1
0
 c

m

5 m

TA

A Aluminum

Steel

Section AA

FIGURE 1.92

A

C

E

D

B

90

60

FIGURE 1.93 An excavator.
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1.47 A heat exchanger consists of six identical stainless steel tubes connected in parallel as shown

in Fig. 1.94. If each tube has an outer diameter 0.30 in., inner diameter 0.29 in., and length

50 in., determine the axial stiffness and the torsional stiffness about the longitudinal axis of

the heat exchanger.

Sector gear 1

Sector gear 2

Link 1

k4

m1g

Link 2

k3

l1

kt1

kt2

O2

O1
2

r1m2g

p1r2

p2

l2
1 k1

k2

u

u

FIGURE 1.95 Two sector gears.

FIGURE 1.94
A heat exchanger.

Section 1.8 Mass or Inertia Elements

1.48 Two sector gears, located at the ends of links 1 and 2, are engaged together and rotate about

and as shown in Fig. 1.95. If links 1 and 2 are connected to springs to and and

as shown, find the equivalent torsional spring stiffness and equivalent mass moment of

inertia of the system with reference to Assume (a) the mass moment of inertia of link 1

(including the sector gear) about is and that of link 2 (including the sector gear) about

is and (b) the angles and are small.u2u1J2,O2

J1O1

u1.

kt2

kt1k4k1O2,O1
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1.49 In Fig. 1.96 find the equivalent mass of the rocker arm assembly with respect to the x

coordinate.

1.51 Two masses, having mass moments of inertia and are placed on rotating rigid shafts

that are connected by gears, as shown in Fig. 1.98. If the numbers of teeth on gears 1 and 2

are and respectively, find the equivalent mass moment of inertia corresponding to u1.n2,n1

J2,J1

k2

m2

x

k1

kt

J0

m1

a

b

FIGURE 1.96 Rocker arm assembly.

Motor,
Jmotor

Load,
Jload

J1, n1

J2, n2 J3, n3

J4, n4

Driving
Shaft 1

Shaft 2

Shaft 3

Shaft N

Gear 2N * 1
J2N*1, n2N*1

Gear 2N
J2N, n2N

Shaft N + 1

1

2 3

4

FIGURE 1.97

1.50 Find the equivalent mass moment of inertia of the gear train shown in Fig. 1.97 with refer-

ence to the driving shaft. In Fig. 1.97, and denote the mass moment of inertia and the

number of teeth, respectively, of gear i, i = 1, 2, Á , 2N.

niJi
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2

Rigid
shafts

Gear 2, n2

Gear 1, n1

J2

J1
1

u

u

FIGURE 1.98 Rotational masses on geared shafts.

1.52 A simplified model of a petroleum pump is shown in Fig. 1.99, where the rotary motion of

the crank is converted to the reciprocating motion of the piston. Find the equivalent mass,

of the system at location A.meq,

c

B

l1

l2

l3

l4

b

Walking beam (mass moment
of inertia, Jb)

Horsehead
(mass, mh)

xh

A

Ladder

Stationary
frame

PistonCrank (mass moment of
inertia, Jc, and radius, rc)

Oil well

u

u

FIGURE 1.99

1.53 Find the equivalent mass of the system shown in Fig. 1.100.

1.54 Figure 1.101 shows an offset slider-crank mechanism with a crank length r, connecting

rod length l, and offset If the crank has a mass and mass moment of inertia of and

respectively, at its center of mass A, the connecting rod has a mass and mass moment

of inertia of and respectively, at its center of mass C, and the piston has a mass 

determine the equivalent rotational inertia of the system about the center of rotation of the

crank, point O.

mp,Jc,mc

Jr,

m rd.



106 CHAPTER 1 FUNDAMENTALS OF VIBRATION

Section 1.9 Damping Elements

1.55 Find a single equivalent damping constant for the following cases:

a. When three dampers are parallel.

b. When three dampers are in series.

c. When three dampers are connected to a rigid bar (Fig. 1.102) and the equivalent damper

is at site c1.

k2

k1

Sphere, mass ms

rs

No slip

90

l2

O

l1

m

Bell crank lever,
mass moment of
inertia J0

x(t)

FIGURE 1.100

O

B

r

C D

mc , Jc

mp

mr, Jr

ll1

l2

d

f

y

x

FIGURE 1.101 Slider-crank mechanism.



PROBLEMS 107

d. When three torsional dampers are located on geared shafts (Fig. 1.103) and the equivalent

damper is at location 

Hint: The energy dissipated by a viscous damper in a cycle during harmonic motion is given

by where c is the damping constant, is the frequency, and X is the amplitude of

oscillation.

vpcvX2,

ct1
.

Number of teeth

n1

n2

n3

ct
1

ct
2

ct
3

Oil

FIGURE 1.103 Dampers located on geared shafts.

c1
x1 c2

x2 c3
x3

l1

l2

l3

Pivot

FIGURE 1.102 Dampers connected to a
rigid bar.

1.56 Consider a system of two dampers, with damping constants and arranged in parallel as

shown in Fig. 1.104. The rigid bar to which the two dampers are connected remains horizon-

tal when the force F is zero. Determine the equivalent damping constant of the system 

that relates the force applied (F) to the resulting velocity (v) as 

Hint: Because the damping constants of the two dampers are different and the distances 

and are not the same, the rigid bar will not remain horizontal when the force F is applied.

1.57* Design a piston-cylinder-type viscous damper to achieve a damping constant of 1 lb-sec/in.

using a fluid of viscosity 

1.58* Design a shock absorber (piston-cylinder-type dashpot) to obtain a damping constant of 

lb-sec/in. using SAE 30 oil at 70°F. The diameter of the piston has to be less than 2.5 in.

105

4 mreyn (1 reyn = 1 lb-sec/in.2).

l2

l1

F = cev.
(ce)

c2,c1
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1.59 Develop an expression for the damping constant of the rotational damper shown in Fig. 1.105

in terms of and where denotes the constant angular velocity of the inner

cylinder, and d and h represent the radial and axial clearances between the inner and outer

cylinders.

vm,D, d, l, h, v,

c1 c2

F

v

l1 l2

FIGURE 1.104 Parallel dampers sub-
jected to load.

*

Fluid of
viscosity m

D

l

FIGURE 1.105

1.60 Consider two nonlinear dampers with the same force-velocity relationship given by

with F in newtons and v in meters/second. Find the linearized

damping constant of the dampers at an operating velocity of 10 m/s.

1.61 If the linearized dampers of Problem 1.60 are connected in parallel, determine the resulting

equivalent damping constant.

1.62 If the linearized dampers of Problem 1.60 are connected in series, determine the resulting

equivalent damping constant.

F = 1000v + 400v2
+ 20v3
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1.63 The force-velocity relationship of a nonlinear damper is given by 

where F is in newtons and v is in meters/second. Find the linearized damping constant of the

damper at an operating velocity of 5 m/s. If the resulting linearized damping constant is used

at an operating velocity of 10 m/s, determine the error involved.

1.64 The experimental determination of damping force corresponding to several values of the

velocity of the damper yielded the following results:

F = 500v + 100v2
+ 50v3,

Damping force (newtons) 80 150 250 350 500 600

Velocity of damper (meters/second) 0.025 0.045 0.075 0.110 0.155 0.185

Determine the damping constant of the damper.

1.65 A flat plate with a surface area of moves above a parallel flat surface with a lubricant

film of thickness 1.5 mm in between the two parallel surfaces. If the viscosity of the lubricant

is 0.5 Pa-s, determine the following:

a. Damping constant.

b. Damping force developed when the plate moves with a velocity of 2 m/s.

1.66 Find the torsional damping constant of a journal bearing for the following data: Viscosity of

the lubricant 0.35 Pa-s, Diameter of the journal or shaft (2 R): 0.05 m, Length of the

bearing (l): 0.075 m, Bearing clearance (d): 0.005 m. If the journal rotates at a speed (N) of

3000 rpm, determine the damping torque developed.

1.67 If each of the parameters ( R, l, d, and N) of the journal bearing described in Problem 1.66 is

subjected to a variation about the corresponding value given, determine the percentage

fluctuation in the values of the torsional damping constant and the damping torque developed.

Note: The variations in the parameters may have several causes, such as measurement error,

manufacturing tolerances on dimensions, and fluctuations in the operating temperature of the

bearing.

1.68 Consider a piston with an orifice in a cylinder filled with a fluid of viscosity as shown in

Fig. 1.106. As the piston moves in the cylinder, the fluid flows through the orifice, giving rise

to a friction or damping force. Derive an expression for the force needed to move the piston

with a velocity v and indicate the type of damping involved.

Hint: The mass flow rate of the fluid (q) passing through an orifice is given by 

where is a constant for a given fluid, area of cross section of the cylinder (or area of piston),

and area of the orifice [1.52].

1.69 The force (F)-velocity relationship of a nonlinear damper is given by

where a and b are constants. Find the equivalent linear damping constant when the relative

velocity is 5 m/s with N-s/m and b = 0.2 N-s2/m2.a = 5

F = ax
#
+ bx

# 2

(x
#
)

a

q = a 2¢p,

m

;5%
m,

(m):

0.25 m2
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1.70 The damping constant (c) due to skin-friction drag of a rectangular plate moving in a fluid of

viscosity is given by (see Fig. 1.107):

Design a plate-type damper (shown in Fig. 1.42) that provides an identical damping constant

for the same fluid.

c = 100ml2d

m

Piston rod

Viscous
fluid

Cylinder
(fixed)

Piston with orifice

F

(force)

v 
(velocity)

FIGURE 1.106 Piston and cylinder with orifice flow.

l

vd

FIGURE 1.107

1.71 The damping constant (c) of the dashpot shown in Fig. 1.108 is given by [1.27]:

Determine the damping constant of the dashpot for the following data: Pa-s,

1.72 In Problem 1.71, using the given data as reference, find the variation of the damping constant

c when

a. r is varied from 0.5 cm to 1.0 cm.

b. h is varied from 0.05 cm to 0.10 cm.

c. a is varied from 2 cm to 4 cm.

l = 10 cm, h = 0.1 cm, a = 2 cm, r = 0.5 cm.

m = 0.3445

c =

6pml

h3
 B ¢a -

h

2

2

- r2R C a2
- r2

a -

h

2

- hS



PROBLEMS 111

2r

a

h

l

FIGURE 1.108

A
F

c2 + 15N*s/m

N*s/mc1 + 10

0.25 m

0.75 m

0.25 m

O

FIGURE 1.109 Rigid bar connected
by dampers.

1.73 A massless bar of length 1 m is pivoted at one end and subjected to a force F at the other end. 

Two translational dampers, with damping constants and are 

connected to the bar as shown in Fig. 1.109. Determine the equivalent damping constant, 

of the system so that the force F at point A can be expressed as where v is the lin-

ear velocity of point A.

1.74 Find an expression for the equivalent translational damping constant of the system shown in

Fig. 1.110 so that the force F can be expressed as where v is the velocity of the

rigid bar A.

F = ceqv,

F = ceqv,

ceq,

c2 = 15 N-s/mc1 = 10 N-s/m
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c1

c1

c2

F

v

c2

Rigid bar A

FIGURE 1.110 Dampers connected in series-parallel.

Section 1.10 Harmonic Motion

1.75 Express the complex number in the exponential form 

1.76 Add the two complex numbers and and express the result in the form 

1.77 Subtract the complex number from and express the result in the form 

1.78 Find the product of the complex numbers and and express the

result in the form 

1.79 Find the quotient, of the complex numbers and and

express the result in the form 

1.80 The foundation of a reciprocating engine is subjected to harmonic motions in x and y directions:

where X and Y are the amplitudes, is the angular velocity, and is the phase difference.

a. Verify that the resultant of the two motions satisfies the equation of the ellipse given by

(see Fig. 1.111):

(E.1)

b. Discuss the nature of the resultant motion given by Eq. (E.1) for the special cases of

and 

Note: The elliptic figure represented by Eq. (E.1) is known as a Lissajous figure and is

useful in interpreting certain types of experimental results (motions) displayed by

oscilloscopes.

f = p.f = 0, f =
p

2
,

x2

X2
+

y2

Y2
- 2 

xy

XY
 cos f = sin2 f

fv

y(t)  = Y cos(vt + f)

x(t) = X cos vt

Aeiu.
z2 = (3 - 4i)z1 = (1 + 2i)z1/z2,

Aeiu.
z2 = (3 - 4i)z1 = (1 + 2i)

Aeiu.(3 - 4i)(1 + 2i)

Aeiu.(3 - 4i)(1 + 2i)

Aeiu.5 + 2i
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1.81 The foundation of an air compressor is subjected to harmonic motions (with the same fre-

quency) in two perpendicular directions. The resultant motion, displayed on an oscilloscope,

appears as shown in Fig. 1.112. Find the amplitudes of vibration in the two directions and the

phase difference between them.

x

y

A

P

O
t

B

t

OA + X

OB + Y

f

v

v

FIGURE 1.111 Lissajous figure.

x (mm)

y (mm)

12

10

8

6

4

2

*2

*8 *6 *4 *2 0 2 4 6 8 10 12

*4

*6

*8

FIGURE 1.112
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1.82 A machine is subjected to the motion The initial conditions are

given by and 

a. Find the constants A and 

b. Express the motion in the form and identify the constants

and 

1.83 Show that any linear combination of and such that 

represents a simple harmonic motion.

1.84 Find the sum of the two harmonic motions and 

Use:

a. Trigonometric relations

b. Vector addition

c. Complex-number representation

1.85 If one of the components of the harmonic motion is 

find the other component.

1.86 Consider the two harmonic motions and Is the sum

a periodic motion? If so, what is its period?

1.87 Consider two harmonic motions of different frequencies: and 

Is the sum a harmonic motion? If so, what is its period?

1.88 Consider the two harmonic motions and Is the difference

a harmonic motion? If so, what is its period?

1.89 Find the maximum and minimum amplitudes of the combined motion 

when and Also find the frequency of beats correspond-

ing to x(t).

1.90 A machine is subjected to two harmonic motions, and the resultant motion, as displayed by an

oscilloscope, is shown in Fig. 1.113. Find the amplitudes and frequencies of the two motions.

1.91 A harmonic motion has an amplitude of 0.05 m and a frequency of 10 Hz. Find its period,

maximum velocity, and maximum acceleration.

1.92 An accelerometer mounted on a building frame indicates that the frame is vibrating harmon-

ically at 15 cps, with a maximum acceleration of 0.5g. Determine the amplitude and the max-

imum velocity of the building frame.

1.93 The maximum amplitude and the maximum acceleration of the foundation of a centrifugal

pump were found to be and Find the operating speed of the

pump.

1.94 An exponential function is expressed as with the values of x(t) known at 

and as and Determine the values of A and a.x(2) = 0.226795.x(1) = 0.752985t = 2
t = 1x(t) = Ae-at

x
$

max = 0.4g.xmax = 0.25 mm

x2(t) = 3 sin 29t.x1(t) = 3 sin 30t
x(t) = x1(t) + x2(t)

x(t) = x1(t) - x2(t)
x2(t) = cos pt.x1(t) =

1
2 cos p2  t

x1(t) + x2(t)
x2(t) = cos 3t.x1(t) = 2 cos 2t

x1(t) + x2(t)
x2(t) = sin pt.x1(t) =

1
2 cos p2  t

(vt + 30°),
x1(t) = 5 sinx(t) = 10 sin(vt + 60°)

x2(t) = 10 cos(3t + 2).x1(t) = 5 cos(3t + 1)

sin vt (A1, A2 = constants)
x(t) = A1 cos vt + A2cos vtsin vt

A2.A1

x(t) = A1 cos vt + A2 sin vt,
a.

x
#
(0) = 1.0 m/s.x(0) = 3 mm

x(t) = A cos(50t + a) mm.
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1.95 When the displacement of a machine is given by where x is measured in

millimeters and t in seconds, find (a) the period of the machine in sec, and (b) the frequency

of oscillation of the machine in rad/sec as well as in Hz.

1.96 If the motion of a machine is described as determine

the values of A and B.

1.97 Express the vibration of a machine given by in the form

1.98 If the displacement of a machine is given by where x is in meters

and t is in seconds, find the variations of the velocity and acceleration of the machine. Also

find the amplitudes of displacement, velocity, and acceleration of the machine.

1.99 If the displacement of a machine is described as where x is

in inches and t is in seconds, find the expressions for the velocity and acceleration of the

machine. Also find the amplitudes of displacement, velocity, and acceleration of the machine.

1.100 The displacement of a machine is expressed as where x is in

meters and t is in seconds. If the displacement of the machine at is known to be

0.04 m, determine the value of the phase angle 

1.101 The displacement of a machine is expressed as where x is in meters

and t is in seconds. If the displacement and the velocity of the machine at are known to

be 0.05 m and 0.005 m/s, determine the values of A and 

1.102 A machine is found to vibrate with simple harmonic motion at a frequency of 20 Hz and an

amplitude of acceleration of 0.5g. Determine the displacement and velocity of the machine.

Use the value of g as 9.81 m/s2.

f.
t = 0

x(t) = A sin(6 t + f),

f.
t = 0

x(t) = 0.05 sin(6 t + f),

x(t) = 0.15 sin 4 t + 2.0 cos 4 t,

x(t) = 0.2 sin(5 t + 3),

x(t) = A cos(5 t + f).
x(t) = -3.0 sin 5 t - 2.0 cos 5 t

8 sin(5 t + 1) = A sin 5 t + B cos 5 t,

x(t) = 18 cos 8t,

t, ms

x(t), mm

6

4

2

0
1 8 9 10 11 122 43 5 6 7

*2

*4

*6

FIGURE 1.113
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A

x(t)

0
2 2

3tt 5t
2

2t tt

FIGURE 1.114

1.103 The amplitudes of displacement and acceleration of an unbalanced turbine rotor are found to

be 0.5 mm and 0.5g, respectively. Find the rotational speed of the rotor using the value of g

as 

1.104 The root mean square (rms) value of a function, x(t), is defined as the square root of the aver-

age of the squared value of x(t) over a time period 

Using this definition, find the rms value of the function

1.105 Using the definition given in Problem 1.104, find the rms value of the function shown in

Fig. 1.54(a).

Section 1.11 Harmonic Analysis

1.106 Prove that the sine Fourier components are zero for even functions that is, when

Also prove that the cosine Fourier components ( and ) are zero for odd

functions that is, when 

1.107 Find the Fourier series expansions of the functions shown in Figs. 1.58(ii) and (iii). Also,

find their Fourier series expansions when the time axis is shifted down by a distance A.

1.108 The impact force created by a forging hammer can be modeled as shown in Fig. 1.114.

Determine the Fourier series expansion of the impact force.

x(- t) = -x(t).
ana0x(- t) = x(t).

(bn)

x(t) = X sin vt = X sin 
2pt

t

xrms = A
1

tL
t

0
[x(t)]2 dt

t:

9.81 m/s2.

1.109 Find the Fourier series expansion of the periodic function shown in Fig. 1.115. Also plot the

corresponding frequency spectrum.

1.110 Find the Fourier series expansion of the periodic function shown in Fig. 1.116. Also plot the

corresponding frequency spectrum.

1.111 Find the Fourier series expansion of the periodic function shown in Fig. 1.117. Also plot the

corresponding frequency spectrum.
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A

*A

x(t)

0
2t tt

FIGURE 1.116

1.112 The Fourier series of a periodic function, x(t), is an infinite series given by

(E.1)

where

(E.2)

(E.3)

(E.4)bn =
v

p3

2p
v

0

x(t) sin nvt dt

an =
v

p3

2p
v

0

x(t) cos nvt dt

a0 =
v

p3

2p
v

0

x(t) dt

x(t) =
a0

2
+ a

q

n=1
  (an cos nvt + bn sin nvt)

A

x(t)

0
2tt t

FIGURE 1.115

A

x(t)

0
2t tt

FIGURE 1.117
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is the circular frequency and is the time period. Instead of including the infinite

number of terms in Eq. (E.1), it is often truncated by retaining only k terms as

(E.5)

so that the error, e(t), becomes

(E.6)

Find the coefficients and which minimize the square of the error over a time

period:

(E.7)

Compare the expressions of and with Eqs. (E.2) to (E.4) and state your observation(s).

1.113 Conduct a harmonic analysis, including the first three harmonics, of the function given

below:

b
'

na
'

0, a
'

n,

L

p

v

-
p

v

e2(t) dt

b
'

na
'

0, a
'

n,

e(t) = x(t) - x
'

(t)

x(t) L x
'

(t) =
a
'

0

2
+ a

k

n=1
  ( a
'

n cos nvt + b
'

n sin nvt)

2p>vv

1.114 In a centrifugal fan (Fig. 1.118(a)), the air at any point is subjected to an impulse each time a

blade passes the point, as shown in Fig. 1.118(b). The frequency of these impulses is deter-

mined by the speed of rotation of the impeller n and the number of blades, N, in the impeller.

For and determine the first three harmonics of the pressure fluctuation

shown in Fig. 1.118(b).

N = 4,n = 100 rpm

ti 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

xi 9 13 17 29 43 59 63 57 49

ti 0.20 0.22 0.24 0.26 0.28 0.30 0.32

xi 35 35 41 47 41 13 7

A

Pressure (psi)

0

4 4
9t

4
5tt 3t2t t (sec)

pmax * 100

Impeller

(a) Centrifugal fan (b) Ideal pressure fluctuation at a point

n

t

FIGURE 1.118
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TABLE 1.3

t (s) Mt (N-m) t (s) Mt (N-m) t (s) Mt (N-m)

0.00050 770 0.00450 1890 0.00850 1050

0.00100 810 0.00500 1750 0.00900 990

0.00150 850 0.00550 1630 0.00950 930

0.00200 910 0.00600 1510 0.01000 890

0.00250 1010 0.00650 1390 0.01050 850

0.00300 1170 0.00700 1290 0.01100 810

0.00350 1370 0.00750 1190 0.01150 770

0.00400 1610 0.00800 1110 0.01200 750

1.115 Solve Problem 1.114 by using the values of n and N as 200 rpm and 6 instead of 100 rpm and

4, respectively.

1.116 The torque variation with time, of an internal combustion engine, is given in Table 1.3.

Make a harmonic analysis of the torque. Find the amplitudes of the first three harmonics.

(Mt)

1.117 Make a harmonic analysis of the function shown in Fig. 1.119 including the first three

harmonics.

40

30

20

10

F
o

rc
e
 (

N
)

Time (s)

0

0 0.1 0.2 0.3 0.4 0.5 0.6

*10

*20

*30

*40

FIGURE 1.119

Section 1.12 Examples Using MATLAB

1.118 Plot the Fourier series expansion of the function x(t) given in Problem 1.113 using

MATLAB.

1.119 Use MATLAB to plot the variation of the force with time using the Fourier series expansion

determined in Problem 1.117.
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1.120 Use MATLAB to plot the variations of the damping constant c with respect to r, h, and a as

determined in Problem 1.72.

1.121 Use MATLAB to plot the variation of spring stiffness (k) with deformation (x) given by the

relations:

a.

b.

1.122 A mass is subjected to two harmonic motions given by and

Plot the resultant motion of the mass using MATLAB and identify the 

beat frequency and the beat period.

x2(t) = 3 sin 29t.
x1(t) = 3 sin 30t

k = 500 + 500x2; 0 x 4.
k = 1000x - 100x2; 0 x 4.

DESIGN PROJECTS

1.123*A slider-crank mechanism is shown in Fig. 1.120. Derive an expression for the motion of the

piston P in terms of the crank length r, the connecting-rod length l, and the constant angular

velocity of the crank 

a. Discuss the feasibility of using the mechanism for the generation of harmonic motion.

b. Find the value of I/r for which the amplitude of every higher harmonic is smaller than that

of the first harmonic by a factor of at least 25.

v.

C

Q

B

A

x

P

O

xp

l

r

* vt

v

u

f

FIGURE 1.120
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1.124*The vibration table shown in Fig. 1.121 is used to test certain electronic components for

vibration. It consists of two identical mating gears and that rotate about the axes 

and attached to the frame F. Two equal masses, m each, are placed symmetrically about

the middle vertical axis as shown in Fig. 1.121. During rotation, an unbalanced vertical

force of magnitude where and velocity of gears,

will be developed, causing the table to vibrate. Design a vibration table that can develop a

force in the range 0 100 N over a frequency range 25 50 Hz.

v = angularu = vtP = 2mv2r cos u,

O2

O1G2G1

O2O1

G2

F

Spring

Object
being tested

G1

m

r r

m

u u

v v

FIGURE 1.121 A vibration table.

1.125*The arrangement shown in Fig. 1.122 is used to regulate the weight of material fed from a

hopper to a conveyor [1.44]. The crank imparts a reciprocating motion to the actuating rod

through the wedge. The amplitude of motion imparted to the actuating rod can be varied by

moving the wedge up or down. Since the conveyor is pivoted about point O, any overload on

the conveyor makes the lever OA tilt downward, thereby raising the wedge. This causes a

reduction in the amplitude of the actuating rod and hence the feed rate. Design such a

weight-regulating system to maintain the weight at lb per minute.

1.126*Figure 1.123 shows a vibratory compactor. It consists of a plate cam with three profiled

lobes and an oscillating roller follower. As the cam rotates, the roller drops after each rise.

Correspondingly, the weight attached at the end of the follower also rises and drops. The

10 ; 0.1
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A O

Wedge

Pivot point

Hopper

Conveyor

Crank

Actuating rod

FIGURE 1.122 A vibratory weight-regulating system.

contact between the roller and the cam is maintained by the spring. Design a vibration com-

pactor that can apply a force of 200 lb at a frequency of 50 Hz.

1.127*Vibratory bowl feeders are widely used in automated processes where a high volume of

identical parts are to be oriented and delivered at a steady rate to a workstation for further

tooling [1.45, 1.46]. Basically, a vibratory bowl feeder is separated from the base by a set of

inclined elastic members (springs), as shown in Fig. 1.124. An electromagnetic coil

mounted between the bowl and the base provides the driving force to the bowl. The vibra-

tory motion of the bowl causes the components to move along the spiral delivery track

located inside the bowl with a hopping motion. Special tooling is fixed at suitable positions

along the spiral track in order to reject the parts that are defective or out of tolerance or have

Roller

Lobes

Plate cam
Weight

Spring

Follower

FIGURE 1.123 A vibratory compactor.
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Bowl

Outlet

Base

Electromagnet
Elastic supports
(springs)

Spiral delivery
track

FIGURE 1.124 A vibratory bowl feeder.

incorrect orientation. What factors must be considered in the design of such vibratory bowl

feeders?

1.128*The shell-and-tube exchanger shown in Fig. 1.125(a) can be modeled as shown in Fig.

1.125(b) for a simplified vibration analysis. Find the cross-sectional area of the tubes so that

the total stiffness of the heat exchanger exceeds a value of N/m in the axial direc-

tion and N-m/rad in the tangential direction. Assume that the tubes have the same

length and cross section and are spaced uniformly.

20 * 10
6

200 * 10
6

Effect of baffles neglected

76 steel tubes

2 m

(b)(a)

1 m

FIGURE 1.125 (Part (a) courtesy of Young Radiator Company.)



Sir Isaac Newton (1642 1727) was an English natural philosopher, a professor of
mathematics at Cambridge University, and president of the Royal Society. His
Principia Mathematica (1687), which deals with the laws and conditions of
motion, is considered to be the greatest scientific work ever produced. The defini-
tions of force, mass, and momentum and his three laws of motion crop up contin-
ually in dynamics. Quite fittingly, the unit of force named newton  in SI units
happens to be the approximate weight of an average apple, the falling object that
inspired him to study the laws of gravity. (Illustration of David Eugene Smith,
History of Mathematics, Vol. I General Survey of the History of Elementary

Mathematics, Dover Publications, Inc., New York, 1958.)
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This chapter starts with a consideration of the free vibration of an undamped single-degree-

of-freedom (spring-mass) system. Free vibration means that the mass is set into motion

due to initial disturbance with no externally applied force other than the spring force,

damper force, or gravitational force. To study the free-vibration response of the mass, we

need to derive the governing equation, known as the equation of motion. The equation of

motion of the undamped translational system is derived using four methods. The natural

frequency of vibration of the system is defined and the solution of the equation of motion

is presented using appropriate initial conditions. The solution is shown to represent har-

monic motion. The equation of motion and the solution corresponding to free vibration of

an undamped torsional system are presented. The response of first-order systems and the

time constant are considered. Rayleigh s method, based on the principle of conservation of

energy, is presented with illustrative examples.

Next, the derivation of the equation for the free vibration of a viscously damped single-

degree-of-freedom system and its solution are considered. The concepts of critical damp-

ing constant, damping ratio, and frequency of damped vibration are introduced. The

distinctions between underdamped, critically damped, and overdamped systems are

explained. The energy dissipated in viscous damping and the concepts of specific damp-

ing and loss coefficient are considered. Viscously damped torsional systems are also con-

sidered analogous to viscously damped translational systems with applications. The

graphical representation of characteristic roots and the corresponding solutions as well as

the concept of parameter variations and root locus plots are considered. The equations of

motion and their solutions of single-degree-of-freedom systems with Coulomb and hys-

teretic damping are presented. The concept of complex stiffness is also presented. The

idea of stability and its importance is explained along with an example. The determina-

tion of the responses of single-degree-of-freedom systems using MATLAB is illustrated

with examples.

Learning Objectives

After completing this chapter, you should be able to do the following:

* Derive the equation of motion of a single-degree-of-freedom system using a suitable

technique such as Newton s second law of motion, D Alembert s principle, the prin-

ciple of virtual displacements, and the principle of conservation of energy.

* Linearize the nonlinear equation of motion.

* Solve a spring-mass-damper system for different types of free-vibration response

depending on the amount of damping.

* Compute the natural frequency, damped frequency, logarithmic decrement, and time

constant.

* Determine whether a given system is stable or not.

* Find the responses of systems with Coulomb and hysteretic damping.

* Find the free-vibration response using MATLAB.
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*x

*x, x, x

k

m m

(a) (b) (c)

O

Stretched length

Free length
+ l0

x

kx

FIGURE 2.1 A spring-mass system in horizontal position.

2.1 Introduction

A system is said to undergo free vibration when it oscillates only under an initial distur-

bance with no external forces acting afterward. Some examples are the oscillations of the

pendulum of a grandfather clock, the vertical oscillatory motion felt by a bicyclist after hit-

ting a road bump, and the motion of a child on a swing after an initial push.

Figure 2.1(a) shows a spring-mass system that represents the simplest possible vibra-

tory system. It is called a single-degree-of-freedom system, since one coordinate (x) is suf-

ficient to specify the position of the mass at any time. There is no external force applied to

the mass; hence the motion resulting from an initial disturbance will be free vibration.

meq

keq

FIGURE 2.2

Equivalent spring-

mass system for 

the cam-follower

system of Fig. 1.32.



2.1 INTRODUCTION 127

FIGURE 2.3 The space needle (structure).

Since there is no element that causes dissipation of energy during the motion of the mass,

the amplitude of motion remains constant with time; it is an undamped system. In actual

practice, except in a vacuum, the amplitude of free vibration diminishes gradually over

time, due to the resistance offered by the surrounding medium (such as air). Such vibra-

tions are said to be damped. The study of the free vibration of undamped and damped

single-degree-of-freedom systems is fundamental to the understanding of more advanced

topics in vibrations.

Several mechanical and structural systems can be idealized as single-degree-of-freedom

systems. In many practical systems, the mass is distributed, but for a simple analysis, it can

be approximated by a single point mass. Similarly, the elasticity of the system, which may

be distributed throughout the system, can also be idealized by a single spring. For the cam-

follower system shown in Fig. 1.39, for example, the various masses were replaced by an

equivalent mass in Example 1.7. The elements of the follower system (pushrod,

rocker arm, valve, and valve spring) are all elastic but can be reduced to a single equivalent

spring of stiffness For a simple analysis, the cam-follower system can thus be idealized

as a single-degree-of-freedom spring-mass system, as shown in Fig. 2.2.

Similarly, the structure shown in Fig. 2.3 can be considered a cantilever beam that is

fixed at the ground. For the study of transverse vibration, the top mass can be considered a

keq.

(meq)
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(b) Equivalent spring-
mass system

(a) Building frame

Elastic columns
(mass is negligible)

Rigid floor
(mass * m)

x(t)

x(t)x(t)

k

m

FIGURE 2.5 Idealization of a building frame.

(a) Idealization of the
tall structure

(b) Equivalent
spring-mass system

x(t)

k

m

m
m

l

x(t)

3EI

l
3

k *

FIGURE 2.4 Modeling of tall structure as spring-mass system.

point mass and the supporting structure (beam) can be approximated as a spring to

obtain the single-degree-of-freedom model shown in Fig. 2.4. The building frame shown in

Fig. 2.5(a) can also be idealized as a spring-mass system, as shown in Fig. 2.5(b). In this

case, since the spring constant k is merely the ratio of force to deflection, it can be deter-

mined from the geometric and material properties of the columns. The mass of the ideal-

ized system is the same as that of the floor if we assume the mass of the columns to be

negligible.
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Using Newton s second law of motion, in this section we will consider the derivation of the

equation of motion. The procedure we will use can be summarized as follows:

1. Select a suitable coordinate to describe the position of the mass or rigid body in the

system. Use a linear coordinate to describe the linear motion of a point mass or the

centroid of a rigid body, and an angular coordinate to describe the angular motion of

a rigid body.

2. Determine the static equilibrium configuration of the system and measure the dis-

placement of the mass or rigid body from its static equilibrium position.

3. Draw the free-body diagram of the mass or rigid body when a positive displacement

and velocity are given to it. Indicate all the active and reactive forces acting on the

mass or rigid body.

4. Apply Newton s second law of motion to the mass or rigid body shown by the free-

body diagram. Newton s second law of motion can be stated as follows:

The rate of change of momentum of a mass is equal to the force acting on it.

Thus, if mass m is displaced a distance when acted upon by a resultant force in

the same direction, Newton s second law of motion gives

If mass m is constant, this equation reduces to

(2.1)

where

is the acceleration of the mass. Equation (2.1) can be stated in words as

For a rigid body undergoing rotational motion, Newton s law gives

(2.2)

where is the resultant moment acting on the body and and are the

resulting angular displacement and angular acceleration, respectively. Equation (2.1) or

(2.2) represents the equation of motion of the vibrating system.

The procedure is now applied to the undamped single-degree-of-freedom system

shown in Fig. 2.1(a). Here the mass is supported on frictionless rollers and can have

u

!
*

= d2u(t)>dt2u

!
M
!

M
!

(t) = Ju
!
*

Resultant force on the mass = mass * acceleration

x
!* =

d2 x
!
(t)

dt2

F
!
(t) = m 

d2 x
!
(t)

dt2
= mx

!*

F
!
(t) =

d

dt
 +m 

d x
!
(t)

dt
*

F
!
(t)x

!
(t)

2.2.1
Equation of
Motion Using
Newton s Second
Law of Motion

2.2 Free Vibration of an Undamped Translational System
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translatory motion in the horizontal direction. When the mass is displaced a distance 

from its static equilibrium position, the force in the spring is kx, and the free-body diagram

of the mass can be represented as shown in Fig. 2.1(c). The application of Eq. (2.1) to mass

m yields the equation of motion

or

(2.3)mx
$
+ kx = 0

F(t) = -kx = mx
$

+x

2.2.2
Equation of
Motion Using
Other Methods

As stated in Section 1.6, the equations of motion of a vibrating system can be derived using

several methods. The applications of D Alembert s principle, the principle of virtual dis-

placements, and the principle of conservation of energy are considered in this section.

D Alembert s Principle. The equations of motion, Eqs. (2.1) and (2.2), can be rewritten as

(2.4a)

(2.4b)

These equations can be considered equilibrium equations provided that and are

treated as a force and a moment. This fictitious force (or moment) is known as the inertia

force (or inertia moment) and the artificial state of equilibrium implied by Eq. (2.4a) or

(2.4b) is known as dynamic equilibrium. This principle, implied in Eq. (2.4a) or (2.4b), is

called D Alembert s principle. Applying it to the system shown in Fig. 2.1(c) yields the

equation of motion:

(2.3)

Principle of Virtual Displacements. The principle of virtual displacements states that

if a system that is in equilibrium under the action of a set of forces is subjected to a virtual

displacement, then the total virtual work done by the forces will be zero.  Here the virtual

displacement is defined as an imaginary infinitesimal displacement given instantaneously.

It must be a physically possible displacement that is compatible with the constraints of the

system. The virtual work is defined as the work done by all the forces, including the inertia

forces for a dynamic problem, due to a virtual displacement.

Consider a spring-mass system in a displaced position as shown in Fig. 2.6(a), where

x denotes the displacement of the mass. Figure 2.6(b) shows the free-body diagram of the

mass with the reactive and inertia forces indicated. When the mass is given a virtual dis-

placement as shown in Fig. 2.6(b), the virtual work done by each force can be com-

puted as follows:

 Virtual work done by the inertia force = dWi = -(mx
$
) dx

 Virtual work done by the spring force = dWs = -(kx) dx

dx,

-kx - mx
$
= 0 or mx

$
+ kx = 0

-Ju
!*

-mx
!*

M
!
(t) - Ju

!
*

 = 0

F
!

(t) - mx
!* = 0
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When the total virtual work done by all the forces is set equal to zero, we obtain

(2.5)

Since the virtual displacement can have an arbitrary value, Eq. (2.5) gives the

equation of motion of the spring-mass system as

(2.3)

Principle of Conservation of Energy. A system is said to be conservative if no energy

is lost due to friction or energy-dissipating nonelastic members. If no work is done on a

conservative system by external forces (other than gravity or other potential forces), then

the total energy of the system remains constant. Since the energy of a vibrating system is

partly potential and partly kinetic, the sum of these two energies remains constant. The

kinetic energy T is stored in the mass by virtue of its velocity, and the potential energy U is

stored in the spring by virtue of its elastic deformation. Thus the principle of conservation

of energy can be expressed as:

or

(2.6)

The kinetic and potential energies are given by

(2.7)

and

(2.8)

Substitution of Eqs. (2.7) and (2.8) into Eq. (2.6) yields the desired equation

(2.3)mx 
$
+ kx = 0

U =
1
2 kx2

T =
1
2 mx 

#
 2

d

dt
 (T + U) = 0

T + U = constant

mx 
$
+ kx = 0

dx Z 0,

-mx
$
dx - kx dx = 0

(a) Mass under a
displacement x

(b) Free-body diagram

k

m m m

x dx

dx

m
kx

(reactive
force)

+mx

(inertia
force)

*x, x, x

FIGURE 2.6 Mass under virtual displacement.
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2.2.3
Equation of
Motion of a
Spring-Mass
System in
Vertical Position

Consider the configuration of the spring-mass system shown in Fig. 2.7(a). The mass

hangs at the lower end of a spring, which in turn is attached to a rigid support at its upper

end. At rest, the mass will hang in a position called the static equilibrium position, in

which the upward spring force exactly balances the downward gravitational force on the

mass. In this position the length of the spring is where is the static deflection

the elongation due to the weight W of the mass m. From Fig. 2.7(a), we find that, for static

equilibrium,

(2.9)

where g is the acceleration due to gravity. Let the mass be deflected a distance from its

static equilibrium position; then the spring force is as shown in Fig. 2.7(c).

The application of Newton s second law of motion to mass m gives

and since we obtain

(2.10)mx
$
+ kx = 0

kdst = W,

mx
$
= -k(x + dst) + W

-k(x + dst),
+x

W = mg = kdst

dstl0 + dst  
,

Static equilibrium
position

Final position

(a)

Spring force

Potential
energy

Static equilibrium
position

(d)(c)

O

kx

x

k

m m

O

x

W  mg

(b)

W  kx

x

l0  dst

kdst

m

W

k(dst  x)

dst

FIGURE 2.7 A spring-mass system in vertical position.
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Notice that Eqs. (2.3) and (2.10) are identical. This indicates that when a mass moves

in a vertical direction, we can ignore its weight, provided we measure x from its static equi-

librium position.

Note: Equation (2.10), the equation of motion of the system shown in Fig. 2.7, can

also be derived using D Alembert s principle, the principle of virtual displacements, or the

principle of conservation of energy. If we use the latter, for example, we note that the

expression for the kinetic energy, T, remains the same as Eq. (2.7). However, the expres-

sion for the potential energy, U, is to be derived by considering the weight of the mass. For

this we note that the spring force at static equilibrium position is mg. When the

spring deflects by an amount x, its potential energy is given by (see Fig. 2.7(d)):

Furthermore, the potential energy of the system due to the change in elevation of the mass

(note that is downward) is Thus the net potential energy of the system about the

static equilibrium position is given by

Since the expressions of T and U remain unchanged, the application of the principle of

conservation of energy gives the same equation of motion, Eq. (2.3).

 = mgx +
1

2
 kx2

- mgx =
1

2
 kx2

 + change in potential energy due to change in elevation of the mass m

U = potential energy of the spring

-mgx.+x

mgx +
1

2
 kx2

(x = 0)

2.2.4

Solution

The solution of Eq. (2.3) can be found by assuming

(2.11)

where C and s are constants to be determined. Substitution of Eq. (2.11) into Eq. (2.3)

gives

Since C cannot be zero, we have

(2.12)

and hence

(2.13)s = ; + -  

k

m
* 1/2

= ; ivn

ms2
+ k = 0

C(ms2
+ k) = 0

x(t) = Cest
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2.2.5

Harmonic

Motion

Equations (2.15), (2.16), and (2.18) are harmonic functions of time. The motion is sym-

metric about the equilibrium position of the mass m. The velocity is a maximum and the

acceleration is zero each time the mass passes through this position. At the extreme dis-

placements, the velocity is zero and the acceleration is a maximum. Since this represents

simple harmonic motion (see Section 1.10), the spring-mass system itself is called a

harmonic oscillator. The quantity given by Eq. (2.14), represents the system s natural

frequency of vibration.

Equation (2.16) can be expressed in a different form by introducing the notation

(2.19) A2 = A sin f

 A1 = A cos f

vn

where and

(2.14)

Equation (2.12) is called the auxiliary or the characteristic equation corresponding to the dif-

ferential Eq. (2.3). The two values of s given by Eq. (2.13) are the roots of the characteristic

equation, also known as the eigenvalues or the characteristic values of the problem. Since

both values of s satisfy Eq. (2.12), the general solution of Eq. (2.3) can be expressed as

(2.15)

where and are constants. By using the identities

Eq. (2.15) can be rewritten as

(2.16)

where and are new constants. The constants and or and can be deter-

mined from the initial conditions of the system. Two conditions are to be specified to eval-

uate these constants uniquely. Note that the number of conditions to be specified is the

same as the order of the governing differential equation. In the present case, if the values of

displacement x(t) and velocity are specified as and at we

have, from Eq. (2.16),

(2.17)

Hence and Thus the solution of Eq. (2.3) subject to the initial con-

ditions of Eq. (2.17) is given by

(2.18)x(t) = x0 cos vnt +
x 
#

0

vn
 sin vnt

A2 = x 
#

0/vn.A1 = x0

 x 
#
(t = 0) = vnA2 = x 

#

0

 x(t = 0) = A1 = x0

t = 0,x 
#

0x0x 
#
(t) = (dx/dt)(t)

A2A1C2C1A2A1

x(t) = A1 cos vnt + A2 sin vnt

e; ia t
= cos at ; i sin at

C2C1

x(t) = C1e
ivn t

+ C2e-ivn t

vn = + k

m
*1/2

i = (-1)1/2
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where A and are the new constants, which can be expressed in terms of and as

(2.20)

Introducing Eq. (2.19) into Eq. (2.16), the solution can be written as

(2.21)

By using the relations

(2.22)

Eq. (2.16) can also be expressed as

(2.23)

where

(2.24)

and

(2.25)

The nature of harmonic oscillation can be represented graphically as in Fig. 2.8(a). If 

denotes a vector of magnitude A, which makes an angle with respect to the

vertical (x) axis, then the solution, Eq. (2.21), can be seen to be the projection of the vector

on the x-axis. The constants and of Eq. (2.16), given by Eq. (2.19), are merely the 

rectangular components of along two orthogonal axes making angles and 

with respect to the vector Since the angle is a linear function of time, it

increases linearly with time; the entire diagram thus rotates counterclockwise at an angular

velocity As the diagram (Fig. 2.8a) rotates, the projection of onto the x-axis varies 

harmonically so that the motion repeats itself every time the vector sweeps an angle of

The projection of namely x(t), is shown plotted in Fig. 2.8(b) as a function of 

and as a function of t in Fig. 2.8(c). The phase angle can also be interpreted as the angle

between the origin and the first peak.
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x(t) = A0 sin (vnt + f0)
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Note the following aspects of the spring-mass system:

1. If the spring-mass system is in a vertical position, as shown in Fig. 2.7(a), the circu-

lar natural frequency can be expressed as

(2.26)vn = + k
m
*1/2

A1 A2

O

O

x(t)x

(a) (b)

Velocity maximum

x(t) + A cos (vnt , f)

x(t) + A cos (vnt , f)

A

*

x(t)

t

(c)

Amplitude,

A1A

Slope + x0

x0

A + x0
2 * 

x0
2

2
1

vnt

vn

vn
tn +

vnt , f

f

vn

vn

f

vnt
f

2-

2-

FIGURE 2.8 Graphical representation of the motion of a harmonic oscillator.
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The spring constant k can be expressed in terms of the mass m from Eq. (2.9) as

(2.27)

Substitution of Eq. (2.27) into Eq. (2.14) yields

(2.28)

Hence the natural frequency in cycles per second and the natural period are given by

(2.29)

(2.30)

Thus, when the mass vibrates in a vertical direction, we can compute the natural fre-

quency and the period of vibration by simply measuring the static deflection We

don t need to know the spring stiffness k and the mass m.

2. From Eq. (2.21), the velocity and the acceleration of the mass m at time t can

be obtained as

(2.31)

Equation (2.31) shows that the velocity leads the displacement by and the accel-

eration leads the displacement by 

3. If the initial displacement is zero, Eq. (2.21) becomes

(2.32)

If the initial velocity is zero, however, the solution becomes

(2.33)x(t) = x0 cos vnt

(x 
#

0)

x(t) =
x 
#

0

vn
 cos +vnt -

p

2
* =

x 
#

0

vn
 sin vnt

(x0)
p.

p/2

 x
$
(t) =

d2x

dt2
 (t) = -vn

2A cos (vnt - f) = vn
2A cos (vnt - f + p)

 x 
#
(t) =

dx

dt
 (t) = -vnA sin (vnt - f) = vnA cos +vnt - f +

p

2
*

x
$
(t)x 

#
(t)

dst.

 tn =
1

fn
= 2p +dst

g
* 1/2

 fn =
1

2p
 + g

dst

* 1/2

vn = + g

dst

* 1/2

k =
W

dst

=
mg
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4. The response of a single-degree-of-freedom system can be represented in the dis-

placement (x)-velocity -plane, known as the state space or phase plane. For this we

consider the displacement given by Eq. (2.21) and the corresponding velocity:

or

(2.34)

or

(2.35)

where By squaring and adding Eqs. (2.34) and (2.35), we obtain

or

(2.36)

The graph of Eq. (2.36) in the (x, y)-plane is a circle, as shown in Fig. 2.9(a), and

it constitutes the phase-plane or state-space representation of the undamped sys-

tem. The radius of the circle, A, is determined by the initial conditions of motion.

Note that the graph of Eq. (2.36) in the -plane will be an ellipse, as shown in

Fig. 2.9(b).

(x, x 
#
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x2

A2
+

y2

A2
= 1

cos2(vnt - f) + sin2(vnt - f) = 1

y = x 
#
/vn.

sin(vnt - f) = -  

x 
#

Avn
= -  

y

A

 x 
#
(t) = -Avn sin (vnt - f)

 cos(vnt - f) =
x

A

x(t) = A cos (vnt - f)

(b)

O

A
x

y *
x

x

(a)

O
x

A

A

vn

Avn

FIGURE 2.9 Phase-plane representation of an undamped system.
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E X A M P L E  2 . 1
Harmonic Response of a Water Tank

The column of the water tank shown in Fig. 2.10(a) is 300 ft high and is made of reinforced concrete

with a tubular cross section of inner diameter 8 ft and outer diameter 10 ft. The tank weighs lb

when filled with water. By neglecting the mass of the column and assuming the Young s modulus of

reinforced concrete as psi, determine the following:

a. the natural frequency and the natural time period of transverse vibration of the water tank.

b. the vibration response of the water tank due to an initial transverse displacement of 10 in.

c. the maximum values of the velocity and acceleration experienced by the water tank.

Solution: Assuming that the water tank is a point mass, the column has a uniform cross section, and

the mass of the column is negligible, the system can be modeled as a cantilever beam with a

concentrated load (weight) at the free end as shown in Fig. 2.10(b).

a. The transverse deflection of the beam, due to a load P is given by where l is the length, E

is the Young s modulus, and I is the area moment of inertia of the beam s cross section. The

stiffness of the beam (column of the tank) is given by

k =
P

d
=

3EI

l3

Pl3

3EI,d,

4 * 106

6 * 105

l

m

x(t)

(b)(a)

FIGURE 2.10 Elevated tank. (Photo courtesy of West Lafayette Water Company.)
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In the present case, 

and hence

The natural frequency of the water tank in the transverse direction is given by

The natural time period of transverse vibration of the tank is given by

b. Using the initial displacement of and the initial velocity of the water tank as

zero, the harmonic response of the water tank can be expressed, using Eq. (2.23), as

where the amplitude of transverse displacement is given by

and the phase angle by

Thus

(E.1)

c. The velocity of the water tank can be found by differentiating Eq. (E.1) as

(E.2)

and hence

x 
#

max = A0vn = 10(0.9977) = 9.977 in./sec

x 
#
(t) = 10(0.9977) cos ¢0.9977t +

p

2

x(t) = 10 sin ¢0.9977t +
p

2
= 10 cos 0.9977t in.

f0 = tan-1¢x0vn

0
=
p

2

(f0)

A0 = Bx0
2
+ ¢ x 

#

0

vn

2R 1/2

= x0 = 10 in.

(A0)

x(t) = A0 sin (vnt + f0)

(x 
#

0)x0 = 10 in.

tn =
2p

vn
=

2p

0.9977
= 6.2977 sec

vn = A
k

m
= A

1545.6672 * 386.4

6 * 105
= 0.9977 rad/sec

k =

3(4 * 106)(600.9554 * 104)

36003
= 1545.6672 lb/in.

I =
p

64
 (d0

4
- di

4) =
p

64
 (1204

- 964) = 600.9554 * 104
 in.4

l = 3600 in., E = 4 * 106 psi,
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The acceleration of the water tank can be determined by differentiating Eq. (E.2) as

(E.3)

and hence the maximum value of acceleration is given by

*

x
$

max = A0(vn)2
= 10(0.9977)2

= 9.9540 in./sec2

x
$
(t) = -10(0.9977)2 sin +0.9977t +

p

2
*

E X A M P L E  2 . 2
Free-Vibration Response Due to Impact

A cantilever beam carries a mass M at the free end as shown in Fig. 2.11(a). A mass m falls from a

height h onto the mass M and adheres to it without rebounding. Determine the resulting transverse

vibration of the beam.

Solution: When the mass m falls through a height h, it will strike the mass M with a velocity of

where g is the acceleration due to gravity. Since the mass m adheres to M without

rebounding, the velocity of the combined mass immediately after the impact can be

found using the principle of conservation of momentum:

mvm = (M + m)x 
#

0

(x 
#

0)(M + m)
vm = 22gh,

m

MYY YY

x0  
mg

k

m

M

k 
3EI

l3

Young's modulus, E
Moment of inertia, I

l

h

x(t)
ZZ

x(t)

k

M

m

k

2gh

(a)

YY  static equilibrium position of M
ZZ  static equilibrium position of M  m

(b) (c)

vm 

FIGURE 2.11 Response due to impact.
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or

(E.1)

The static equilibrium position of the beam with the new mass is located at a distance of

below the static equilibrium position of the original mass (M) as shown in Fig. 2.11(c). Here k

denotes the stiffness of the cantilever beam, given by

Since free vibration of the beam with the new mass occurs about its own static equilibrium

position, the initial conditions of the problem can be stated as

(E.2)

Thus the resulting free transverse vibration of the beam can be expressed as (see Eq. (2.21)):

where

with and given by Eq. (E.2).

*

x 
#
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3EI
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x0vn
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0

vn
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k
,    x 

#

0 = ¢ m

M + m
22gh

(M + m)

k =
3EI

l3

mg
k

(M + m)

x 
#

0 = ¢ m

M + m
vm = ¢ m

M + m
22gh

E X A M P L E  2 . 3
Young s Modulus from Natural Frequency Measurement

A simply supported beam of square cross section and length 1 m, carrying a mass of

2.3 kg at the middle, is found to have a natural frequency of transverse vibration of 30 rad/s. Deter-

mine the Young s modulus of elasticity of the beam.

Solution: By neglecting the self weight of the beam, the natural frequency of transverse vibration of

the beam can be expressed as

(E.1)vn = A
k

m

5 mm * 5 mm
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where

(E.2)

where E is the Young s modulus, l is the length, and I is the area moment of inertia of the beam:

Since and Eqs. (E.1) and (E.2) yield

or

This indicates that the material of the beam is probably carbon steel.

*

E =
mvn

2l3

192I
=

2.3(30.0)2(1.0)3

192(0.5208 * 10-10)
= 207.0132 * 109 N/m2

k =
192EI

l3
= mvn

2

vn = 30.0 rad/s,m = 2.3 kg, l = 1.0 m,

I =
1

12
 (5 * 10-3)(5 * 10-3)3

= 0.5208 * 10-10 m4

k =
192EI

l3

E X A M P L E  2 . 4
Natural Frequency of Cockpit of a Firetruck

The cockpit of a firetruck is located at the end of a telescoping boom, as shown in Fig. 2.12(a). The

cockpit, along with the fireman, weighs 2000 N. Find the cockpit s natural frequency of vibration in

the vertical direction.

Data: Young s modulus of the material: lengths: cross-

sectional areas: 

Solution: To determine the system s natural frequency of vibration, we find the equivalent stiffness

of the boom in the vertical direction and use a single-degree-of-freedom idealization. For this we

assume that the mass of the telescoping boom is negligible and the telescoping boom can deform

only in the axial direction (with no bending). Since the force induced at any cross section is

equal to the axial load applied at the end of the boom, as shown in Fig. 2.12(b), the axial stiffness of

the boom is given by

(E.1)

where denotes the axial stiffness of the ith segment of the boom:

(E.2)

From the known data 

 kb1
=

(20 * 10-4)(2.1 * 1011)

3
= 14 * 107 N/m

E3 = 2.1 * 1011 N/m2),

E1 = E2 =A3 = 5 cm2,A2 = 10 cm2;(l1 = l2 = l3 = 3 m, A1 = 20 cm2,

kbi
=

AiEi

li
;    i = 1, 2, 3

kbi

1

kb
=

1

kb1

+
1

kb2

+
1

kb3

(kb)

O1 O2

A1 = 20 cm2, A2 = 10 cm2, A3 = 5 cm2.
l1 = l2 = l3 = 3 m;E = 2.1 * 1011 N/m2;
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Thus Eq. (E.1) gives

or

The stiffness of the telescoping boom in the vertical direction, k, can be determined as

The natural frequency of vibration of the cockpit in the vertical direction is given by

vn = A
k

m
= A

(107)(9.81)

2000
= 221.4723 rad/s

k = kb cos2 45° = 107 N/m

kb = 2 * 107 N/m

1

kb
=

1

14 * 107
+

1

7 * 107
+

1

3.5 * 107
=

1

2 * 107

 kb3
=

(5 * 10-4)(2.1 * 1011)

3
= 3.5 * 107 N/m

 kb2
=

(10 * 10-4)(2.1 * 1011)

3
= 7 * 107 N/m

(a)

(b)

P

l3, A3

l2, A2

l1, A1

Bucket

S

R

Telescoping arm

45

Q

P

O1

O2

l3 l2 l1

FIGURE 2.12 Telescoping boom of a fire truck.

*
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E X A M P L E  2 . 5
Natural Frequency of Pulley System

Determine the natural frequency of the system shown in Fig. 2.13(a). Assume the pulleys to be fric-

tionless and of negligible mass.

Solution: To determine the natural frequency, we find the equivalent stiffness of the system and

solve it as a single-degree-of-freedom problem. Since the pulleys are frictionless and massless, the

tension in the rope is constant and is equal to the weight W of the mass m. From the static equilibrium

of the pulleys and the mass (see Fig. 2.13(b)), it can be seen that the upward force acting on pulley 1

is 2W and the downward force acting on pulley 2 is 2W. The center of pulley 1 (point A) moves up by

a distance and the center of pulley 2 (point B) moves down by Thus the total

movement of the mass m (point O) is

as the rope on either side of the pulley is free to move the mass downward. If denotes the equiv-

alent spring constant of the system,

Weight of the mass

Equivalent spring constant
= Net displacement of the mass

keq

2+ 2W
k1

+
2W

k2
*

2W/k2.2W/k1,

Pulley 1

k2

k1

Pulley 2

m

A,

A

k1x1

k1x1 + 2W

x1 +

W W

W

W + mg

mx

O
m

x1

2W
k1

B

B,

k2x2

k2x2 + 2W

x2 +

W W x2

2W
k2

O,

x + 2(x1 * x2)

(a) (b)

**

FIGURE 2.13 Pulley system.
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(E.1)

By displacing mass m from the static equilibrium position by x, the equation of motion of the mass

can be written as

(E.2)

and hence the natural frequency is given by

(E.3)

or

(E.4)

*

2.3 Free Vibration of an Undamped Torsional System
If a rigid body oscillates about a specific reference axis, the resulting motion is called

torsional vibration. In this case, the displacement of the body is measured in terms of an

angular coordinate. In a torsional vibration problem, the restoring moment may be due to

the torsion of an elastic member or to the unbalanced moment of a force or couple.

Figure 2.14 shows a disc, which has a polar mass moment of inertia mounted at

one end of a solid circular shaft, the other end of which is fixed. Let the angular rotation of

the disc about the axis of the shaft be also represents the shaft s angle of twist. From

the theory of torsion of circular shafts [2.1], we have the relation

(2.37)

where is the torque that produces the twist G is the shear modulus, l is the length of

the shaft, is the polar moment of inertia of the cross section of the shaft, given by

(2.38)

and d is the diameter of the shaft. If the disc is displaced by from its equilibrium position,

the shaft provides a restoring torque of magnitude Thus the shaft acts as a torsional

spring with a torsional spring constant
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u
=
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l
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32l
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2.3.1
Equation 
of Motion

The equation of the angular motion of the disc about its axis can be derived by using New-

ton s second law or any of the methods discussed in Section 2.2.2. By considering the free-

body diagram of the disc (Fig. 2.14b), we can derive the equation of motion by applying

Newton s second law of motion:

(2.40)

which can be seen to be identical to Eq. (2.3) if the polar mass moment of inertia the

angular displacement and the torsional spring constant are replaced by the mass m, the

displacement x, and the linear spring constant k, respectively. Thus the natural circular fre-

quency of the torsional system is

(2.41)

and the period and frequency of vibration in cycles per second are

(2.42)

(2.43)fn =
1

2p
 + kt

J0
*1/2

tn = 2p+J0

kt
*1/2

vn = + kt

J0
*1/2

ktu,
J0,

J0 u
  * + ktu = 0

l

D

(a) (b)

d

Shaft

Disc

J0
J0

h

, ,* **

ktu

u

u u u

FIGURE 2.14 Torsional vibration of a disc.
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Note the following aspects of this system:

1. If the cross section of the shaft supporting the disc is not circular, an appropriate tor-

sional spring constant is to be used [2.4, 2.5].

2. The polar mass moment of inertia of a disc is given by

where is the mass density, h is the thickness, D is the diameter, and W is the weight

of the disc.

3. The torsional spring-inertia system shown in Fig. 2.14 is referred to as a torsional

pendulum. One of the most important applications of a torsional pendulum is in a

mechanical clock, where a ratchet and pawl convert the regular oscillation of a small

torsional pendulum into the movements of the hands.

r

J0 =
rhpD4

32
=

WD2

8g

2.3.2
Solution

The general solution of Eq. (2.40) can be obtained, as in the case of Eq. (2.3):

(2.44)

where is given by Eq. (2.41) and and can be determined from the initial condi-

tions. If

(2.45)

the constants and can be found:

(2.46)

Equation (2.44) can also be seen to represent a simple harmonic motion.

 A2 = u  *0 
/vn

 A1 = u0

A2A1

u(t = 0) = u0 and u  *(t = 0) =
du

dt
 (t = 0) = u  *0

A2A1vn

u(t) = A1 cos vnt + A2 sin vnt

E X A M P L E  2 . 6
Natural Frequency of Compound Pendulum

Any rigid body pivoted at a point other than its center of mass will oscillate about the pivot point

under its own gravitational force. Such a system is known as a compound pendulum (Fig. 2.15). Find

the natural frequency of such a system.

Solution: Let O be the point of suspension and G be the center of mass of the compound pendulum,

as shown in Fig. 2.15. Let the rigid body oscillate in the xy-plane so that the coordinate can be used

to describe its motion. Let d denote the distance between O and G, and the mass moment of inertia

of the body about the z-axis (perpendicular to both x and y). For a displacement the restoring

torque (due to the weight of the body W) is and the equation of motion is

(E.1)J0u
  + + Wd sin u = 0

(Wd sin u)
u,

J0

u
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Note that Eq. (E.1) is a second-order nonlinear ordinary differential equation. Although it is possible

to find an exact solution of this equation (see Section 13.3), exact solutions cannot be found for most

nonlinear differential equations. An approximate solution of Eq. (E.1) can be found by one of two

methods. A numerical procedure can be used to integrate Eq. (E.1). Alternatively, Eq. (E.1) can be

approximated by a linear equation whose exact solution can be determined readily. To use the latter

approach, we assume small angular displacements so that is small and Hence Eq. (E.1)

can be approximated by the linear equation:

(E.2)

This gives the natural frequency of the compound pendulum:

(E.3)

Comparing Eq. (E.3) with the natural frequency of a simple pendulum, (see Problem

2.61), we can find the length of the equivalent simple pendulum:

(E.4)

If is replaced by where is the radius of gyration of the body about O, Eqs. (E.3) and (E.4)

become

(E.5)

(E.6) l = + k0
2

d
*

 vn = +gd

k0
2
*1/2

k0mk0
2,J0

l =
J0

md

vn = (g/l)1/2

vn = +Wd

J0
*1/2

= +mgd

J0
* 1/2

J0u
  * + Wdu = 0

sin u L u.u

y

x

W + mg

A

G

B

 O

d

*u

u

FIGURE 2.15 Compound pendulum.
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If denotes the radius of gyration of the body about G, we have

(E.7)

and Eq. (E.6) becomes

(E.8)

If the line OG is extended to point A such that

(E.9)

Eq. (E.8) becomes

(E.10)

Hence, from Eq. (E.5), is given by

(E.11)

This equation shows that, no matter whether the body is pivoted from O or A, its natural frequency is

the same. The point A is called the center of percussion.

*

Center of Percussion. The concepts of compound pendulum and center of percussion

can be used in many practical applications:

1. A hammer can be shaped to have the center of percussion at the hammer head while

the center of rotation is at the handle. In this case, the impact force at the hammer

head will not cause any normal reaction at the handle (Fig. 2.16(a)).

2. In a baseball bat, if on one hand the ball is made to strike at the center of percussion

while the center of rotation is at the hands, no reaction perpendicular to the bat will

be experienced by the batter (Fig. 2.16(b)). On the other hand, if the ball strikes the

bat near the free end or near the hands, the batter will experience pain in the hands as

a result of the reaction perpendicular to the bat.

3. In Izod (impact) testing of materials, the specimen is suitably notched and held in a

vise fixed to the base of the machine (see Fig. 2.16(c)). A pendulum is released from

a standard height, and the free end of the specimen is struck by the pendulum as it

passes through its lowest position. The deformation and bending of the pendulum

can be reduced if the center of percussion is located near the striking edge. In this

case, the pivot will be free of any impulsive reaction.

4. In an automobile (shown in Fig. 2.16(d)), if the front wheels strike a bump, the pas-

sengers will not feel any reaction if the center of percussion of the vehicle is located

near the rear axle. Similarly, if the rear wheels strike a bump at point A, no reaction

vn = b g

(k0
2/d)

r 1/2 = ¢g
l

1/2

= ¢ g

OA

1/2

vn

l = GA + d = OA

GA =
kG
2

d

l = ¢kG2
d

+ d

k0
2
= kG

2
+ d2

kG
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will be felt at the front axle (point O) if the center of percussion is located near the

front axle. It is desirable, therefore, to have the center of oscillation of the vehicle at

one axle and the center of percussion at the other axle [2.2].

2.4 Response of First-Order Systems and Time Constant
Consider a turbine rotor mounted in bearings as shown in Fig. 2.17(a). The viscous fluid

(lubricant) in the bearings offers viscous damping torque during the rotation of the turbine

rotor. Assuming the mass moment of inertia of the rotor about the axis of rotation as J and

the rotational damping constant of the bearings as the application of Newton s second

law of motion yields the equation of motion of the rotor as

(2.47)

where is the angular velocity of the rotor, is the time rate of change of the angular 

velocity, and the external torque applied to the system is assumed to be zero. We assume

the initial angular velocity, as the input and the angular velocity of the

rotor as the output of the system. Note that the angular velocity, instead of the angular dis-

placement, is considered as the output in order to obtain the equation of motion as a first

order differential equation.

The solution of the equation of motion of the rotor, Eq. (2.47), can be found by assuming

the trial solution as

(2.48)

where A and s are unknown constants. By using the initial condition, Eq.

(2.48) can be written as

(2.49)v(t) = v0e
st

v(t = 0) = v0,

v(t) = Aest

v(t = 0) = v0,

v

#
=

dv

dt
v

Jv
#
+ ctv = 0

ct,

A

A

A

O
O

(a) (b) (c) (d)

Pivot O

Pendulum

Specimen

Vise O A

u

FIGURE 2.16 Applications of center of percussion.
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By substituting Eq. (2.49) into Eq. (2.47), we obtain

(2.50)

Since leads to no motion  of the rotor, we assume and Eq. (2.50) can be

satisfied only if

(2.51)

Equation (2.51) is known as the characteristic equation which yields Thus the

solution, Eq. (2.49), becomes

(2.52)

The variation of the angular velocity, given by Eq. (2.52), with time is shown in Fig.

2.17(b). The curve starts at decays and approaches zero as t increases without limit. Inv0,

v(t) = v0e
- 

c
t

J  t

s = -  

ct
J
.

Js + ct = 0

v0 Z 0v0 = 0

v0e
st(Js + ct) = 0

Rotor in bearings

Variation of angular velocity

v(t)

v(t) * v0 e
+

c
t

J
t

v0

0.368 v0

tO
t

Turbine rotor
(mass moment of inertia J)

Lubricant
Bearing LubricantBearing

v

(a)

(b)

FIGURE 2.17



2.5 RAYLEIGH S ENERGY METHOD 153

dealing with exponentially decaying responses, such as the one given by Eq. (2.52), it is

convenient to describe the response in terms of a quantity known as the time constant

The time constant is defined as the value of time which makes the exponent in Eq. (2.52) 

equal to Because the exponent of Eq. (2.52) is known to be the time constant

will be equal to

(2.53)

so that Eq. (2.52) gives, for 

(2.54)

Thus the response reduces to 0.368 times its initial value at a time equal to the time con-

stant of the system.

2.5 Rayleigh s Energy Method
For a single-degree-of-freedom system, the equation of motion was derived using the

energy method in Section 2.2.2. In this section, we shall use the energy method to find the

natural frequencies of single-degree-of-freedom systems. The principle of conservation of

energy, in the context of an undamped vibrating system, can be restated as

(2.55)

where the subscripts 1 and 2 denote two different instants of time. Specifically, we use the

subscript 1 to denote the time when the mass is passing through its static equilibrium posi-

tion and choose as reference for the potential energy. If we let the subscript 2 indi-

cate the time corresponding to the maximum displacement of the mass, we have 

Thus Eq. (2.55) becomes

(2.56)

If the system is undergoing harmonic motion, then and denote the maximum values

of T and U, respectively, and Eq. (2.56) becomes

(2.57)

The application of Eq. (2.57), which is also known as Rayleigh s energy method, gives the

natural frequency of the system directly, as illustrated in the following examples.

Tmax = Umax

U2T1

T1 + 0 = 0 + U2

T2 = 0.
U1 = 0

T1 + U1 = T2 + U2

v(t) = v0e
- 

c
t

J  t
= v0e

-1
= 0.368v0

t = t,

t =
J

ct

-  

ct

J
 t,-1.

(t).

E X A M P L E  2 . 7
Manometer for Diesel Engine

The exhaust from a single-cylinder four-stroke diesel engine is to be connected to a silencer, and the

pressure therein is to be measured with a simple U-tube manometer (see Fig. 2.18). Calculate the

minimum length of the manometer tube so that the natural frequency of oscillation of the mercury

column will be 3.5 times slower than the frequency of the pressure fluctuations in the silencer at an

engine speed of 600 rpm. The frequency of pressure fluctuation in the silencer is equal to

Number of cylinders * Speed of the engine

2
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Solution

1. Natural frequency of oscillation of the liquid column: Let the datum in Fig. 2.18 be taken as

the equilibrium position of the liquid. If the displacement of the liquid column from the equi-

librium position is denoted by x, the change in potential energy is given by

(E.1)

where A is the cross-sectional area of the mercury column and is the specific weight of mer-

cury. The change in kinetic energy is given by

(E.2)

where l is the length of the mercury column. By assuming harmonic motion, we can write

(E.3)

where X is the maximum displacement and is the natural frequency. By substituting 

Eq. (E.3) into Eqs. (E.1) and (E.2), we obtain

(E.4)

(E.5)T = Tmax sin2 
vnt

U = Umax cos2 
vnt

vn

x(t) = X cos vnt

 =
1

2
 
Alg

g
 x 
# 2

T =
1

2
 (mass of mercury)(velocity)2

g

 = (Axg) 

x

2
+ (Axg) 

x

2
= Agx2

 mercury depressed * displacement of the C.G. of the segment)

 = (weight of mercury raised * displacement of the C.G. of the segment) + (weight of

 U = potential energy of raised liquid column + potential energy of depressed liquid column

x

x

l

Datum

FIGURE 2.18 U-tube manometer.
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where

(E.6)

and

(E.7)

By equating to we obtain the natural frequency:

(E.8)

2. Length of the mercury column: The frequency of pressure fluctuations in the silencer

(E.9)

Thus the frequency of oscillations of the liquid column in the manometer is 

By using Eq. (E.8), we obtain

(E.10)

or

(E.11)

*

l =
2.0 * 9.81

(9.0)2
= 0.243 m

+2g

l
*1/2

= 9.0

10p/3.5 = 9.0 rad/sec.

 =
300 * 2p

60
= 10p rad/sec

 = 300 rpm

 =
1 * 600

2

vn = + 2g

l
* 1/2

Tmax,Umax

Tmax =
1

2
 
Aglvn

2

g
 X2

Umax = AgX2

E X A M P L E  2 . 8
Effect of Mass on of a Spring

Determine the effect of the mass of the spring on the natural frequency of the spring-mass system

shown in Fig. 2.19.

Solution: To find the effect of the mass of the spring on the natural frequency of the spring-mass

system, we add the kinetic energy of the system to that of the attached mass and use the energy

method to determine the natural frequency. Let l be the total length of the spring. If x denotes the

displacement of the lower end of the spring (or mass m), the displacement at distance y from the

support is given by y(x/l). Similarly, if denotes the velocity of the mass m, the velocity of a spring

element located at distance y from the support is given by The kinetic energy of the spring

element of length dy is

(E.1)dTs =
1

2
 +ms

l
 dy* + yx 

#

l
*2

y(x 
#
/l).

x 
#

V
n
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where is the mass of the spring. The total kinetic energy of the system can be expressed as

(E.2)

The total potential energy of the system is given by

(E.3)

By assuming a harmonic motion

(E.4)

where X is the maximum displacement of the mass and is the natural frequency, the maximum

kinetic and potential energies can be expressed as

(E.5)

(E.6)

By equating and we obtain the expression for the natural frequency:

(E.7)

Thus the effect of the mass of the spring can be accounted for by adding one-third of its mass to the

main mass [2.3].
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2
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2
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# 2
+

1

2
 
ms

3
 x 
# 2

 =
1

2
 mx 

# 2
+ L

l

y=0
 

1

2
 ,ms

l
 dy* , y2x 
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T = kinetic energy of mass (Tm) + kinetic energy of spring (Ts)
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m

x(t)

FIGURE 2.19 Equivalent mass of a

spring.
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E X A M P L E  2 . 9
Effect of Mass of Column on Natural Frequency of Water Tank

Find the natural frequency of transverse vibration of the water tank considered in Example 2.1 and

Fig. 2.10 by including the mass of the column.

Solution: To include the mass of the column, we find the equivalent mass of the column at the free

end using the equivalence of kinetic energy and use a single-degree-of-freedom model to find the

natural frequency of vibration. The column of the tank is considered as a cantilever beam fixed at one

end (ground) and carrying a mass M (water tank) at the other end. The static deflection of a cantilever

beam under a concentrated end load is given by (see Fig. 2.20):

(E.1)

The maximum kinetic energy of the beam itself is given by

(E.2)

where m is the total mass and (m/l) is the mass per unit length of the beam. Equation (E.1) can be

used to express the velocity variation, as

(E.3)

and hence Eq. (E.2) becomes

(E.4) =
1

2
 
m

l
 
y
#

max
2

4l6
 + 33

35
 l7* =
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2
 + 33

140
 m*  y

#

max
2

 Tmax =
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2l3
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3
 l
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 (3x2l - x3)2

 dx
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(x) =
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2l3
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y
#
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23
 l
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l
 5y
#

(x)62 dx

(Tmax)

 =
ymax

2l3
 (3x2l - x3)
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6EI
 (3l - x) =

ymaxx2

2l3
 (3l - x)
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x P

y(x)
ymax *

Pl3

3EI

FIGURE 2.20 Equivalent mass of the column.
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If denotes the equivalent mass of the cantilever (water tank) at the free end, its maximum kinetic

energy can be expressed as

(E.5)

By equating Eqs. (E.4) and (E.5), we obtain

(E.6)

Thus the total effective mass acting at the end of the cantilever beam is given by

(E.7)

where M is the mass of the water tank. The natural frequency of transverse vibration of the water

tank is given by

(E.8)

*

2.6 Free Vibration with Viscous Damping

vn = A k

Meff

=

Q
k

M +
33

140
 m

Meff = M + meq

meq =
33

140
 m

Tmax =
1

2
 meqy

#

max
2

meq

2.6.1
Equation 
of Motion

As stated in Section 1.9, the viscous damping force F is proportional to the velocity or v

and can be expressed as

(2.58)

where c is the damping constant or coefficient of viscous damping and the negative sign indi-

cates that the damping force is opposite to the direction of velocity. A single-degree-of-freedom

system with a viscous damper is shown in Fig. 2.21. If x is measured from the equilibrium posi-

tion of the mass m, the application of Newton s law yields the equation of motion:

or

(2.59)mx
$

+ cx 
#
+ kx = 0

mx
$

= -cx 
#
- kx

F = -  cx 
#

x 
#

2.6.2
Solution

To solve Eq. (2.59), we assume a solution in the form

(2.60)

where C and s are undetermined constants. Inserting this function into Eq. (2.59) leads to

the characteristic equation

(2.61)ms2 + cs + k = 0

x(t) = Cest
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the roots of which are

(2.62)

These roots give two solutions to Eq. (2.59):

(2.63)

Thus the general solution of Eq. (2.59) is given by a combination of the two solutions 

and :

(2.64)

where and are arbitrary constants to be determined from the initial conditions of the

system.

Critical Damping Constant and the Damping Ratio. The critical damping is

defined as the value of the damping constant c for which the radical in Eq. (2.62) becomes

zero:

+ cc
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System Free-body diagram
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FIGURE 2.21 Single-degree-of-freedom system

with viscous damper.
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or

(2.65)

For any damped system, the damping ratio is defined as the ratio of the damping constant

to the critical damping constant:

(2.66)

Using Eqs. (2.66) and (2.65), we can write

(2.67)

and hence

(2.68)

Thus the solution, Eq. (2.64), can be written as

(2.69)

The nature of the roots and and hence the behavior of the solution, Eq. (2.69), depends

upon the magnitude of damping. It can be seen that the case leads to the undamped

vibrations discussed in Section 2.2. Hence we assume that and consider the follow-

ing three cases.

Case 1. Underdamped system ( or or ). For this condition,

is negative and the roots and can be expressed as

and the solution, Eq. (2.69), can be written in different forms:

 = e- 
zvntbC1 

cos 21 - z2vnt + C2 sin21 - z2vntr

 = e- 
zvntb (C1 + C2) cos 21 - z2vnt + i(C1 - C2) sin 21 - z2vnt r
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zvntbC1e

i21-z2vnt
+ C2e- 

i21-z2vnt r
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(2.70)

where and are arbitrary constants to be determined from the

initial conditions.

For the initial conditions and and can be found:

(2.71)

and hence the solution becomes

(2.72)

The constants and can be expressed as

(2.73)

(2.74)

(2.75)

The motion described by Eq. (2.72) is a damped harmonic motion of angular frequency

but because of the factor the amplitude decreases exponentially with

time, as shown in Fig. 2.22. The quantity

(2.76)

is called the frequency of damped vibration. It can be seen that the frequency of damped

vibration is always less than the undamped natural frequency The decrease in

the frequency of damped vibration with increasing amount of damping, given by Eq.

(2.76), is shown graphically in Fig. 2.23. The underdamped case is very important in

the study of mechanical vibrations, as it is the only case that leads to an oscillatory

motion [2.10].
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Case 2. Critically damped system ( or or ). In this case the

two roots and in Eq. (2.68) are equal:

(2.77)

Because of the repeated roots, the solution of Eq. (2.59) is given by [2.6]1

(2.78)x(t) = (C1 + C2t)e- 
vnt

s1 = s2 = -  

cc

2m
= -  vn

s2s1

c/2m = 2k/mc = ccz = 1

x(t)

X

X1 x1

t1 t2

x2

O

Eq. (2.72)

Xe
+

f
f0

td * vd

vdt

zv
n
t

2p

FIGURE 2.22 Underdamped solution.

1

1O

vd
vn

z

FIGURE 2.23 Variation of with

damping.

vd

1Equation (2.78) can also be obtained by making approach unity in the limit in Eq. (2.72). As 
hence and Thus Eq. (2.72) yields

where and are new constants.C2 = C2vdC1 = C1

x(t) = e- 
vnt(C1 + C2vdt) = (C1 + C2t)e- 

vnt

sin vdt: vdt.cos vdt: 1
z: 1, vn: 0;z
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The application of the initial conditions and for this case

gives

(2.79)

and the solution becomes

(2.80)

It can be seen that the motion represented by Eq. (2.80) is aperiodic (i.e., nonperiodic).

Since as the motion will eventually diminish to zero, as indicated in

Fig. 2.24.

Case 3. Overdamped system ( or or ). As 

Eq. (2.68) shows that the roots and are real and distinct and are given by

with In this case, the solution, Eq. (2.69), can be expressed as

(2.81)

For the initial conditions and the constants and can

be obtained:
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FIGURE 2.24 Comparison of motions with different types of damping.
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(2.82)

Equation (2.81) shows that the motion is aperiodic regardless of the initial conditions

imposed on the system. Since roots and are both negative, the motion diminishes

exponentially with time, as shown in Fig. 2.24.

Note the following aspects of these systems:

1. The graphical representation of different types of the characteristics roots and 

and the corresponding responses (solutions) of the system are presented in Section

2.7. The representation of the roots and with varying values of the system para-

meters c, k and m in the complex plane (known as the root locus plots) is considered

in Section 2.8.

2. A critically damped system will have the smallest damping required for aperiodic

motion; hence the mass returns to the position of rest in the shortest possible time

without overshooting. The property of critical damping is used in many practical

applications. For example, large guns have dashpots with critical damping value, so

that they return to their original position after recoil in the minimum time without

vibrating. If the damping provided were more than the critical value, some delay

would be caused before the next firing.

3. The free damped response of a single-degree-of-freedom system can be represented

in phase-plane or state space as indicated in Fig. 2.25.

s2s1

s2,s1

s2s1

C2 =
-x0vn(z-2z2

- 1) - x 
#

0

2vn2z2
- 1

Critically damped

Underdamped

Overdamped

x(t)

x(t)

(x0, x0)

FIGURE 2.25 Phase plane of a damped system.

2.6.3
Logarithmic
Decrement

The logarithmic decrement represents the rate at which the amplitude of a free-damped

vibration decreases. It is defined as the natural logarithm of the ratio of any two successive

amplitudes. Let and denote the times corresponding to two consecutive amplitudest2t1
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(displacements), measured one cycle apart for an underdamped system, as in Fig. 2.22.

Using Eq. (2.70), we can form the ratio

(2.83)

But , where is the period of damped vibration. Hence

and Eq. (2.83) can be writ-

ten as

(2.84)

The logarithmic decrement can be obtained from Eq. (2.84):

(2.85)

For small damping, Eq. (2.85) can be approximated:

(2.86)

Figure 2.26 shows the variation of the logarithmic decrement with as given by Eqs.

(2.85) and (2.86). It can be noticed that for values up to the two curves are diffi-

cult to distinguish.

z = 0.3,
zd

d M 2pz  if   z V 1

d = ln 

x1

x2
= zvntd = zvn 

2p

21 - z2vn

=
2pz

21 - z2
=

2p

vd

# c

2m

d

x1

x2
=

e-zvnt1

e-zvn(t1+td)
= ezvntd

-  f0) = cos(2p + vdt1 - f0) = cos(vdt1 - f0),cos(vdt2

td = 2p/vdt2 = t1 + td

x1

x2
=

X0e- 
zvnt1 cos (vdt1 - f0)

X0e- 
zvnt2 cos (vdt2 - f0)

14

12

10

8

6

4

2

0 0.2 0.4 0.6 0.8 1.0

Eq. (2.85)

Eq. (2.86)

c

c
c

x
1

x
2
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d

z

FIGURE 2.26 Variation of logarithmic

decrement with damping.
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The logarithmic decrement is dimensionless and is actually another form of the

dimensionless damping ratio Once is known, can be found by solving Eq. (2.85):

(2.87)

If we use Eq. (2.86) instead of Eq. (2.85), we have

(2.88)

If the damping in the given system is not known, we can determine it experimentally by

measuring any two consecutive displacements and By taking the natural logarithm

of the ratio of and we obtain By using Eq. (2.87), we can compute the damping

ratio In fact, the damping ratio can also be found by measuring two displacements sep-

arated by any number of complete cycles. If and denote the amplitudes corre-

sponding to times and , where m is an integer, we obtain

(2.89)

Since any two successive displacements separated by one cycle satisfy the equation

(2.90)

Eq. (2.89) becomes

(2.91)

Equations (2.91) and (2.85) yield

(2.92)

which can be substituted into Eq. (2.87) or Eq. (2.88) to obtain the viscous damping ratio z.

d =
1

m
 ln+ x1

xm+1
*

x1

xm+1
= (ezvntd)m

= emzvntd

xj

xj+1
= ezvntd

x1

xm+1
=

x1

x2
 
x2

x3
 
x3

x4
Á

xm

xm+1

tm+1 = t1 + mtdt1

xm+1x1

zz.
d.x2,x1

x2.x1

z M
d

2p

z =
d

2(2p)2
+ d2

zdz.

2.6.4
Energy
Dissipated 
in Viscous
Damping

In a viscously damped system, the rate of change of energy with time (dW/dt) is given by

(2.93)

using Eq. (2.58). The negative sign in Eq. (2.93) denotes that energy dissipates with time.

Assume a simple harmonic motion as where X is the amplitude of

motion and the energy dissipated in a complete cycle is given by2

x(t) = X sin vdt,

dW

dt
= force * velocity = Fv = -cv2

= -c +dx

dt
*2

2In the case of a damped system, simple harmonic motion is possible only when the steady-
state response is considered under a harmonic force of frequency (see Section 3.4). The loss of energy due to
the damper is supplied by the excitation under steady-state forced vibration [2.7].

vd

x(t) = X cos vdt
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(2.94)

This shows that the energy dissipated is proportional to the square of the amplitude of

motion. Note that it is not a constant for given values of damping and amplitude, since 

is also a function of the frequency 

Equation (2.94) is valid even when there is a spring of stiffness k parallel to the vis-

cous damper. To see this, consider the system shown in Fig. 2.27. The total force resisting

motion can be expressed as

(2.95)

If we assume simple harmonic motion

(2.96)

as before, Eq. (2.95) becomes

(2.97)

The energy dissipated in a complete cycle will be

(2.98) + L
2p/vd

0
cvdX2 cos2 

vdt # d(vdt) = pcvdX2

 = L
2p/vd

0
kX2

vd sin vdt # cos vdt # d(vdt)

 ¢W = L
2p/vd

t=0
Fv dt

F = -kX sin vdt - cvdX cos vdt

x(t) = X sin vdt

F = -kx - cv = -kx - cx 
#

vd.
¢W

 = pcvdX2

 ¢W = L
(2p/vd)

t=0
c +dx

dt
*2

dt = L
2p

0
cX2

vd  
cos2 

vdt # d(vdt)

k c

x

FIGURE 2.27

Spring and damper

in parallel.
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which can be seen to be identical with Eq. (2.94). This result is to be expected, since the

spring force will not do any net work over a complete cycle or any integral number of cycles.

We can also compute the fraction of the total energy of the vibrating system that is dis-

sipated in each cycle of motion as follows. The total energy of the system W can 

be expressed either as the maximum potential energy or as the maximum kinetic 

energy the two being approximately equal for small values of

damping. Thus

(2.99)

using Eqs. (2.85) and (2.88). The quantity is called the specific damping capac-

ity and is useful in comparing the damping capacity of engineering materials. Another

quantity known as the loss coefficient is also used for comparing the damping capacity

of engineering materials. The loss coefficient is defined as the ratio of the energy dissi-

pated per radian and the total strain energy:

(2.100)loss coefficient =
(¢W/2p)

W
=

¢W

2pW

¢W/W

¢W

W
=

pcvdX2

1
2 mvd

2X2
= 2 + 2p

vd
* + c

2m
* = 2d M 4pz = constant

11
2 mvmax

2
=

1
2 mX2vd

22,

1
1
2 kX22

(¢W/W),

2.6.5
Torsional
Systems with
Viscous
Damping

The methods presented in Sections 2.6.1 through 2.6.4 for linear vibrations with viscous

damping can be extended directly to viscously damped torsional (angular) vibrations. For

this, consider a single-degree-of-freedom torsional system with a viscous damper, as shown

in Fig. 2.28(a). The viscous damping torque is given by (Fig. 2.28(b)):

(2.101)

where is the torsional viscous damping constant, is the angular velocity of

the disc, and the negative sign denotes that the damping torque is opposite the direction of

angular velocity. The equation of motion can be derived as

(2.102)

where moment of inertia of the disc, constant of the system (restor-

ing torque per unit angular displacement), and displacement of the disc. The

solution of Eq. (2.102) can be found exactly as in the case of linear vibrations. For exam-

ple, in the underdamped case, the frequency of damped vibration is given by

(2.103)

where

(2.104)vn = A
kt

J0

vd = 21 - z2 vn

u = angular

kt = springJ0 = mass

J0 u
  + + ct u  * + kt 

u = 0

u  * = du/dtct

T = -ct u  *
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and

(2.105)

where is the critical torsional damping constant.ctc

z =
ct

ctc

=
ct

2J0vn

=
ct

22ktJ0

u,u,

(a)

Shaft, kt

Fluid, ct Disc, J0

(b)

ktu ctu

J0

u,
. .

.

.

u

FIGURE 2.28 Torsional viscous damper.

E X A M P L E  2 . 1 0
Response of Anvil of a Forging Hammer

The anvil of a forging hammer weighs 5,000 N and is mounted on a foundation that has a stiffness of

and a viscous damping constant of 10,000 N-s/m. During a particular forging opera-

tion, the tup (i.e., the falling weight or the hammer), weighing 1,000 N, is made to fall from a height

of 2 m onto the anvil (Fig. 2.29(a)). If the anvil is at rest before impact by the tup, determine the

response of the anvil after the impact. Assume that the coefficient of restitution between the anvil and

the tup is 0.4.

Solution: First we use the principle of conservation of momentum and the definition of the

coefficient of restitution to find the initial velocity of the anvil. Let the velocities of the tup just

before and just after impact with the anvil be and respectively. Similarly, let and be the

velocities of the anvil just before and just after the impact, respectively (Fig. 2.29(b)). Note that the

va2va1vt2,vt1

5 * 106 N/m
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c
k

M

c
k

M

m

m
2 m

vt2vt1

va2va1

(a) (b)

FIGURE 2.29 Forging hammer.

displacement of the anvil is measured from its static equilibrium position and all velocities are

assumed to be positive when acting downward. The principle of conservation of momentum gives

(E.1)

where (anvil is at rest before the impact) and can be determined by equating its kinetic

energy just before impact to its potential energy before dropping from a height of 

(E.2)

or

Thus Eq. (E.1) becomes

that is,

(E.3)

The definition of the coefficient of restitution (r) yields:

(E.4)

that is,

that is,

(E.5)va2 = vt2 + 2.504396

0.4 =  - + va2 - vt2

0 - 6.26099
*

r = - + va2 - vt2

va1 - vt1
*

510.204082 va2 = 638.87653 - 102.040813 vt2

5000

9.81
  (va2 - 0) =

1000

9.81
 (6.26099 - vt2)

vt1 = 22gh = 22 * 9.81 * 2 = 6.26099 m/s

1

2
 m vt1

2
= mgh

h = 2 m:

vt1va1 = 0

M(va2 - va1) = m(vt1 - vt2)
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The solution of Eqs. (E.3) and (E.5) gives

Thus the initial conditions of the anvil are given by

The damping coefficient is equal to

The undamped and damped natural frequencies of the anvil are given by

The displacement response of the anvil is given by Eq. (2.72):

*

 = e-9.799995 t 50.01490335 sin 98.024799 t6m

 x(t) = e-z vn  t b x 
#

0

vd
 sin vd 

t r

 vd = vn21 - z2
= 98.99494921 - 0.09899492

= 98.024799 rad/s

 vn = A k

M
=

S
5 * 106

a 5000

9.81
b

= 98.994949 rad/s

z =
c

22kM
=

1000

2C(5 * 106)¢ 5000

9.81

= 0.0989949

x0 = 0;    x 
#

0 = 1.460898 m/s

va2 = 1.460898 m/s;    vt2 = -1.043498 m/s

E X A M P L E  2 . 1 1
Shock Absorber for a Motorcycle

An underdamped shock absorber is to be designed for a motorcycle of mass 200 kg (Fig. 2.30(a)).

When the shock absorber is subjected to an initial vertical velocity due to a road bump, the resulting

displacement-time curve is to be as indicated in Fig. 2.30(b). Find the necessary stiffness and damp-

ing constants of the shock absorber if the damped period of vibration is to be 2 s and the amplitude

is to be reduced to one-fourth in one half cycle (i.e., ). Also find the minimum initial

velocity that leads to a maximum displacement of 250 mm.

Approach: We use the equation for the logarithmic decrement in terms of the damping ratio, equation

for the damped period of vibration, time corresponding to maximum displacement for an underdamped

system, and envelope passing through the maximum points of an underdamped system.

Solution: Since Hence the logarithmic decrement becomes

(E.1)d = ln ¢ x1

x2
= ln(16) = 2.7726 =

2pz21 - z2

x1.5 = x1/4, x2 = x1.5/4 = x1/16.

x1.5 = x1/4x1
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k/2 k/2
c

m

(a)

x(t)

tO

x1 x2

x2.5

x1.5

(b)

FIGURE 2.30 Shock absorber of a motorcycle.

from which the value of can be found as The damped period of vibration is given to be

2 s. Hence

The critical damping constant can be obtained:

Thus the damping constant is given by

and the stiffness by

The displacement of the mass will attain its maximum value at time given by

(See Problem 2.99.) This gives

or

t1 =

sin-1(0.9149)

p
= 0.3678 sec

sin vdt1 = sin pt1 = 21 - (0.4037)2
= 0.9149

sin vdt1 = 21 - z2

t1,

k = mvn
2
= (200)(3.4338)2

= 2358.2652 N/m

c = zcc = (0.4037)(1373.54) = 554.4981 N-s/m

cc = 2mvn = 2(200)(3.4338) = 1373.54 N-s/m

 vn =

2p

221 - (0.4037)2
= 3.4338 rad/s

 2 = td =

2p

vd
=

2p

vn21 - z2

z = 0.4037.z
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The envelope passing through the maximum points (see Problem 2.99) is given by

(E.2)

Since Eq. (E.2) gives at 

or

The velocity of the mass can be obtained by differentiating the displacement

as

(E.3)

When Eq. (E.3) gives

*

 = 1.4294 m/s

 x 
#
(t = 0) = x 

#

0 = Xvd = Xvn21 - z2
= (0.4550)(3.4338) 21 - (0.4037)2

t = 0,

x 
#
(t) = Xe-zvnt(-zvn sin vdt + vd cos vdt)

x(t) = Xe-zvn t sin vdt

X = 0.4550 m

0.25 = 21 - (0.4037)2 Xe-(0.4037)(3.4338)(0.3678)

t1x = 250 mm,

x = 21 - z2Xe-zvn  t

E X A M P L E  2 . 1 2
Analysis of Cannon

The schematic diagram of a large cannon is shown in Fig. 2.31 [2.8]. When the gun is fired, high-

pressure gases accelerate the projectile inside the barrel to a very high velocity. The reaction force

pushes the gun barrel in the direction opposite that of the projectile. Since it is desirable to bring the

gun barrel to rest in the shortest time without oscillation, it is made to translate backward against a

critically damped spring-damper system called the recoil mechanism. In a particular case, the gun

barrel and the recoil mechanism have a mass of 500 kg with a recoil spring of stiffness 10,000 N/m.

The gun recoils 0.4 m upon firing. Find (1) the critical damping coefficient of the damper, (2) the ini-

tial recoil velocity of the gun, and (3) the time taken by the gun to return to a position 0.1 m from its

initial position.

Recoil mechanism
(spring and damper)

Gun barrel

Projectile

FIGURE 2.31 Recoil of cannon.
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Solution

1. The undamped natural frequency of the system is

and the critical damping coefficient (Eq. 2.65) of the damper is

2. The response of a critically damped system is given by Eq. (2.78):

(E.1)

where and The time at which x(t) reaches a maximum value can

be obtained by setting The differentiation of Eq. (E.1) gives

Hence yields

(E.2)

In this case, hence Eq. (E.2) leads to Since the maximum value of

x(t) or the recoil distance is given to be we have

or

3. If denotes the time taken by the gun to return to a position 0.1 m from its initial position, we have

(E.3)

The solution of Eq. (E.3) gives 

*

2.7 Graphical Representation of Characteristic Roots and Corresponding
Solutions

t2 = 0.8258 s.

0.1 = C2t2e
-

 
vn t2 = 4.8626t2e

-
 
4.4721t2

t2

x 
#

0 = xmaxvne = (0.4)(4.4721)(2.7183) = 4.8626 m/s

xmax = x(t = t1) = C2t1e
-

 
vn t1 =

x 
#

0

vn
 e-1 =

x 
#

0

evn

xmax = 0.4 m,
t1 = 1/vn.x0 = C1 = 0;

t1 = + 1

vn
-

C1

C2
*

x 
#
(t) = 0

x 
#
(t) = C2e

-
 
vnt - vn(C1 + C2t)e

-
 
vnt

x 
#
(t) = 0.

t1C2 = x 
#

0 + vnx0.C1 = x0

x(t) = (C1 + C2t)e
-

 
vnt

cc = 2mvn = 2(500)(4.4721) = 4472.1 N-s/m

vn = A
k

m
= A

10,000

500
= 4.4721 rad/s

2.7.1
Roots of the
Characteristic
Equation

The free vibration of a single-degree-of-freedom spring-mass-viscous-damper system

shown in Fig. 2.21 is governed by Eq. (2.59):

(2.106)

whose characteristic equation can be expressed as (Eq. (2.61)):

(2.107)

or

(2.108)s2 + 2zvns + vn
2
= 0

ms2 + cs + k = 0

mx
$

+ cx
#
+ kx = 0

If necessary, sections 2.7 and 2.8 can be skipped without losing continuity.
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The roots of this characteristic equation, called the characteristic roots or, simply, roots,

help us in understanding the behavior of the system. The roots of Eq. (2.107) or (2.108) are

given by (see Eqs. (2.62) and (2.68)):

(2.109)

or

(2.110)s1, s2 = -zvn ; ivn 21 - z2

s1, s2 =
-c ; 2c2

- 4mk

2 m

2.7.2
Graphical
Representation
of Roots and
Corresponding
Solutions

The roots given by Eq. (2.110) can be plotted in a complex plane, also known as the s-plane,

by denoting the real part along the horizontal axis and the imaginary part along the vertical

axis. Noting that the response of the system is given by

(2.111)

where and are constants, the following observations can be made by examining Eqs.

(2.110) and (2.111):

1. Because the exponent of a larger real negative number (such as ) decays faster

than the exponent of a smaller real negative number (such as ), the roots lying far-

ther to the left in the s-plane indicate that the corresponding responses decay faster

than those associated with roots closer to the imaginary axis.

2. If the roots have positive real values of s that is, the roots lie in the right half of

the s-plane the corresponding response grows exponentially and hence will be

unstable.

3. If the roots lie on the imaginary axis (with zero real value), the corresponding

response will be naturally stable.

4. If the roots have a zero imaginary part, the corresponding response will not

oscillate.

5. The response of the system will exhibit an oscillatory behavior only when the roots

have nonzero imaginary parts.

6. The farther the roots lie to the left of the s-plane, the faster the corresponding

response decreases.

7. The larger the imaginary part of the roots, the higher the frequency of oscillation of

the corresponding response of the system.

Figure 2.32 shows some representative locations of the characteristic roots in the

s-plane and the corresponding responses [2.15]. The characteristics that describe the

behavior of the response of a system include oscillatory nature, frequency of oscilla-

tion, and response time. These characteristics are inherent to the system (depend on the

values of m, c, and k) and are determined by the characteristic roots of the system but

not by the initial conditions. The initial conditions determine only the amplitudes and

phase angles.

e-t
e-2t

C2C1

x(t) = C1e
s1 

t
+ C2es2 

t
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2.8.1
Interpretations
of 
and in the 
s-plane

T
Vn, Vd, Z,

Although the roots and appear as complex conjugates, we consider only the roots

in the upper half of the s-plane. The root is plotted as point A with the real value as 

and the complex value as , so that the length of OA is (Fig. 2.33).

Thus the roots lying on the circle of radius correspond to the same natural fre-

quency of the system (PAQ denotes a quarter of the circle). Thus different con-

centric circles represent systems with different natural frequencies as shown in Fig.

2.34. The horizontal line passing through point A corresponds to the damped natural 

frequency, Thus, lines parallel to the real axis denote systems hav-

ing different damped natural frequencies, as shown in Fig. 2.35.

It can be seen, from Fig. 2.33, that the angle made by the line OA with the imaginary

axis is given by

(2.112)

or

(2.113)

Thus, radial lines passing through the origin correspond to different damping ratios, as

shown in Fig. 2.36. Therefore, when we have no damping , and the damped

natural frequency will reduce to the undamped natural frequency. Similarly, when z = 1,
(u = 0)z = 0,

u = sin-1 z

sin u =

zvn

vn
= z

vd = vn21 - z2.

(vn)
vn

vnvn 21 - z2zvn

s1

s2s1

STABLE (LHP) UNSTABLE (RHP)Im (s)

Re (s)
O

FIGURE 2.32 Locations of characteristic roots ( ) and the corresponding responses of the system.

2.8 Parameter Variations and Root Locus Representations
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Q

D

O

A B

P

Im

Re
+zvn

vn

vn

u * sin
+1 z

vd * vn 1 + z2

FIGURE 2.33 Interpretations of and z.vn, vd,

O

Im

Re

vn1

vn2

FIGURE 2.34 in s-plane.vn
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we have critical damping and the radical line lies along the negative real axis. The time

constant of the system, is defined as

(2.114)

and hence the distance DO or AB represents the reciprocal of the time constant, 

Hence different lines parallel to the imaginary axis denote reciprocals of different time

constants (Fig. 2.37).

zvn =

1

t
.

t =

1

zvn

t,

O
Re

Im

vd1
 * vn 1 + z1

2

vd2
 * vn 1 + z2

2

FIGURE 2.35 in s-plane.vd

Im

O

Re

u1 * sin
+1

 z1u1

u2 u2 * sin
+1

 z2

FIGURE 2.36 in s-plane.z



2.8 PARAMETER VARIATIONS AND ROOT LOCUS REPRESENTATIONS 179

Im

O

Re

1

t1

1

t2

FIGURE 2.37 in s-plane.t

2.8.2

Root Locus 

and Parameter

Variations

A plot or graph that shows how changes in one of the parameters of the system will mod-

ify the roots of the characteristic equation of the system is known as the root locus plot.

The root locus method is a powerful method of analysis and design for stability and tran-

sient response of a system. For a vibrating system, the root locus can be used to describe

qualitatively the performance of the system as various parameters, such as the mass, damp-

ing constant, or spring constant, are changed. In the root locus method, the path or locus of

the roots of the characteristic equation is plotted without actually finding the roots them-

selves. This is accomplished by using a set of rules which lead to a reasonably accurate

plot in a relatively short time [2.8]. We study the behavior of the system by varying one

parameter, among the damping ratio, spring constant, and mass, at a time in terms of the

locations of its characteristic roots in the s-plane.

Variation of the damping ratio: We vary the damping constant from zero to infinity and

study the migration of the characteristic roots in the s-plane. For this, we use Eq. (2.109).

We notice that negative values of the damping constant need not be considered,

because they result in roots lying in the positive real half-plane that correspond to an

unstable system. Thus we start with to obtain, from Eq. (2.109),

(2.115)s1,2 = ;  
2-4mk

2m
= ; i A

k

m
= ; ivn

c = 0

(c 6 0)
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Thus the locations of the characteristic roots start on the imaginary axis. Because the roots

appear in complex conjugate pairs, we concentrate on the upper imaginary half-plane and

then locate the roots in the lower imaginary half-plane as mirror images. By keeping the

undamped natural frequency constant, we vary the damping constant c. Noting that

the real and imaginary parts of the roots in Eq. (2.109) can be expressed as

(2.116)

for we find that

(2.117)

Since is held fixed, Eq. (2.117) represents the equation of a circle with a radius 

in the (real) and (imaginary) plane. The radius vector will make an angle 

with the positive imaginary axis with

(2.118)

(2.119)

with

(2.120)

Thus the two roots trace loci or paths in the form of circular arcs as the damping ratio

is increased from zero to unity as shown in Fig. 2.38. The root with positive imaginary

part moves in the counterclockwise direction while the root with negative imaginary

part moves in the clockwise direction. When the damping ratio is equal to one, the

two loci meet, denoting that the two roots coincide that is, the characteristic equation

has repeated roots. As we increase the damping ratio beyond the value of unity, the

system becomes overdamped and, as seen earlier in Section 2.6, both the roots will

become real. From the properties of a quadratic equation, we find that the product of

the two roots is equal to the coefficient of the lowest power of s (which is equal to 

in Eq. (2.108)).

Since the value of is held constant in this study, the product of the two roots is a

constant. With increasing values of the damping ratio one root will increase and the

other root will decrease, with the locus of each root remaining on the negative real axis.

Thus one root will approach and the other root will approach zero. The two loci will

join or coincide at a point, known as the breakaway point, on the negative real axis. The

two parts of the loci that lie on the negative real axis, one from point P to and the

other from point P to the origin, are known as segments.

-q

-q

(z),
vn

vn
2

(z)

a = 21 - z2

cos u =
s

vn
=
zvn

vn
= z

sin u =
vd

vn
= a

ur = vnvds

r = vnvn

s2
+ vd

2
= vn

2

0 6 z 6 1,

-  s = -  
c

2m
= - zvn and 24mk - c2

2m
= vn21 - z2

= vd

(vn)
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for z , 1 for z , 1

Real axis

Imaginary axis

s1

s1 * s2 * +vn

z * 0

z * 0

0 - z - 1

t .

O * s1s2 * +.

(t      .)

s2

s2

ivn * s1

+ivn * s2

vd

u

vn

+s * +zvn

FIGURE 2.38 Root locus plot with variation of damping ratio .z

E X A M P L E  2 . 1 3
Study of Roots with Variation of c

Plot the root locus diagram of the system governed by the equation

(E.1)

by varying the value of 

Solution: The roots of Eq. (E.1) are given by

(E.2)

We start with a value of At the roots are given by These roots are

shown as dots on the imaginary axis in Fig. 2.39. By using an increasing sequence of values of c, Eq.

(E.2) gives the roots as indicated in Table 2.1.

It can be seen that the roots remain complex conjugates as c is increased up to a value of 

At both the roots become real and identical with a value of As c increases beyond a

value of 18, the roots remain distinct with negative real values. One root becomes more and more

negative and the other root becomes less and less negative. Thus, as one root approaches

while the other root approaches 0. These trends of the roots are shown in Fig 2.39.-q

c: q ,

-3.0.c = 18,

c = 18.

s1,2 = ;3i.c = 0,c = 0.

s1,2 =
-c ; 2c2 - 324

6

c 7 0.

3s2 + cs + 27 = 0
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*

Re

Im

O

c * ,c * ,

s2s2
s1 * +, s1 s1, s2

s2 * +3i

c * 0

s1 * 3i

c * 0

c * 18

+3

FIGURE 2.39 Root locus plot with variation of damping constant (c).

TABLE 2.1

Value of c Value of s1 Value of s2

0 +3i -3i

2 -0.3333 + 2.9814i -0.3333 - 2.9814i

4 -0.6667 + 2.9721i -0.6667 - 2.9721i

6 -1.0000 + 2.8284i -1.0000 - 2.8284i

8 -1.3333 + 2.6874i -1.3333 - 2.6874i

10 -1.6667 + 2.4944i -1.6667 - 2.4944i

12 -2.0000 + 2.2361i -2.0000 - 2.2361i

14 -2.3333 + 1.8856i -2.3333 - 1.8856i

16 -2.6667 + 1.3744i -2.6667 - 1.3744i

18 -3.0000 -3.0000

20 -1.8803 -4.7863

30 -1.0000 -9.0000

40 -0.7131 -12.6202

50 -5587 -16.1079

100 -0.2722 -33.0611

1000 -0.0270 -333.3063
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Variation of the spring constant: Since the spring constant does not appear explicitly in

Eq. (2.108), we consider a specific form of the characteristic equation (2.107) as:

(2.121)

The roots of Eq. (2.121) are given by

(2.122)

Since the spring stiffness cannot be negative for real vibration systems, we consider the

variation of the values of k from zero to infinity. Equation (2.122) shows that for

both the roots are real and identical. As k is made greater than 64, the roots

become complex conjugates. The roots for different values of k are shown in Table 2.2.

The variations of the two roots can be plotted (as dots), as shown in Fig. 2.40.

Variation of the mass: To find the migration of the roots with a variation of the mass m,

we consider a specific form of the characteristic equation, Eq. (2.107), as

(2.123)

whose roots are given by

(2.124)

Since negative values as well as zero value of mass need not be considered for physical

systems, we vary the value of m in the range Some values of m and the cor-

responding roots given by Eq. (2.124) are shown in Table 2.3.

It can be seen that both the roots are negative with values ( ) for

and for The larger root is observed to move to the left and them = 2.(-2, -5)m = 1
-1.6148, -12.3852

1 m 6 q .

s1,2 =
-14 ; 2196 - 80m

2m

ms2
+ 14s + 20 = 0

0 k 6 64,

s1,2 =
-16 ; 2256 - 4k

2
= -8 ; 264 - k

s2
+ 16s + k = 0

TABLE 2.2

Value of k Value of s1 Value of s2

0 0 -16

16 -1.0718 -14.9282

32 -2.3431 -13.6569

48 -4 -12

64 -8 -8

80 -8 + 4i -8 - 4i

96 -8 + 5.6569i -8 - 5.6569i

112 -8 + 6.9282i -8 - 6.9282i

128 -8 + 8i -8 - 8i
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Re

Im
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k * 128

k * 80
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k * 48

k * 80

k * 0

k * 128

FIGURE 2.40 Root locus plot with variation of spring constant (k).

TABLE 2.3

Value of m Value of s1 Value of s2

1 -1.6148 -12.3852

2 -2.0 -5.0

2.1 -2.0734 -4.5932

2.4 -2.5 -3.3333

2.45 -2.8571 -2.8571

2.5 -2.8 + 0.4000i -2.8 + 0.4000i

3 -2.3333 + 1.1055i -2.3333 - 1.1055i

5 -1.4 + 1.4283i -1.4 + 1.4283i

8 -0.8750 + 1.3169i -0.8750 - 1.3169i

10 -0.7000 + 1.2288i -0.7000 - 1.2288i

14 -0.5000 + 1.0856i -0.5000 - 1.0856i

20 -0.3500 + 0.9367i -0.3500 - 0.9367i

30 -0.2333 + 0.7824i -0.2333 - 0.7824i

40 -0.1750 + 0.6851i -0.1750 - 0.6851i

50 -0.1400 + 0.6167i -0.1400 - 0.6167i

100 -0.0700 + 0.4417i -0.0700 - 0.4417i

1000 -0.0070 + 0.1412i -0.0070 - 0.1412i
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smaller root is found to move to the right, as shown in Fig. 2.41. The larger and smaller

roots are found to converge to the value as m increases to a value of 2.45. Beyond

this value of the roots become complex conjugate. As the value of m increases

from 2.45 to a large value the loci of the two complex conjugates (roots) are

shown by the curve (circle) shown in Fig. 2.41. For both the complex conjugate

roots converge to zero 

2.9 Free Vibration with Coulomb Damping
In many mechanical systems, Coulomb or dry-friction dampers are used because of their

mechanical simplicity and convenience [2.9]. Also, in vibrating structures, whenever the

components slide relative to each other, dry-friction damping appears internally. As stated

in Section 1.9, Coulomb damping arises when bodies slide on dry surfaces. Coulomb s law

of dry friction states that, when two bodies are in contact, the force required to produce

(s1, s2: 0).
m: q ,

(: q),
m = 2.45,

-2.8571

3

2

1

Migration of s1 as
m increases

Migration of s2 
as m increases

+1

+2

+3

+1+2+3+4

+2.8571 
(for m * 2.45)

+5+6

(for m      ,)

FIGURE 2.41 Root locus plot with variation of mass (m).
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sliding is proportional to the normal force acting in the plane of contact. Thus the friction

force F is given by

(2.125)

where N is the normal force, equal to the weight of the mass and is the coeffi-

cient of sliding or kinetic friction. The value of the coefficient of friction depends on the

materials in contact and the condition of the surfaces in contact. For example, for

metal on metal (lubricated), 0.3 for metal on metal (unlubricated), and nearly 1.0 for rubber on

metal. The friction force acts in a direction opposite to the direction of velocity. Coulomb

damping is sometimes called constant damping, since the damping force is independent of the

displacement and velocity; it depends only on the normal force N between the sliding surfaces.

m M 0.1
(m)

m(W = mg)

F = mN = mW = mmg

2.9.1
Equation 
of Motion

Consider a single-degree-of-freedom system with dry friction as shown in Fig. 2.42(a).

Since the friction force varies with the direction of velocity, we need to consider two cases,

as indicated in Figs. 2.42(b) and (c).

Case 1. When x is positive and dx/dt is positive or when x is negative and dx/dt is positive

(i.e., for the half cycle during which the mass moves from left to right), the equation of

motion can be obtained using Newton s second law (see Fig. 2.42(b)):

(2.126)

This is a second-order nonhomogeneous differential equation. The solution can be verified

by substituting Eq. (2.127) into Eq. (2.126):

(2.127)

where is the frequency of vibration and and are constants whose val-

ues depend on the initial conditions of this half cycle.

Case 2. When x is positive and dx/dt is negative or when x is negative and dx/dt is

negative (i.e., for the half cycle during which the mass moves from right to left), the

equation of motion can be derived from Fig. 2.42(c) as

(2.128)-kx + mN = mx
$ or mx

$
+ kx = mN

A2A1vn = 2k/m

x(t) = A1 cos vnt + A2 sin vnt -
mN

k

mx
$
= -kx - mN or mx

$
+ kx = -mN

m

W

N

kx x
·

mN mN

(b)

m

W

N

kx x
·

(c)

m

k
*x

(a)

FIGURE 2.42 Spring-mass system with Coulomb damping.
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The solution of Eq. (2.128) is given by

(2.129)

where and are constants to be found from the initial conditions of this half cycle. The

term appearing in Eqs. (2.127) and (2.129) is a constant representing the virtual dis-

placement of the spring under the force if it were applied as a static force. Equations

(2.127) and (2.129) indicate that in each half cycle the motion is harmonic, with the equi-

librium position changing from to every half cycle, as shown in Fig. 2.43.-(mN/k)mN/k

mN,
mN/k

A4A3

x(t) = A3 cos vnt + A4 sin vnt +
mN

k

2.9.2

Solution

Equations (2.126) and (2.128) can be expressed as a single equation (using ):

(2.130)

where sgn(y) is called the signum function, whose value is defined as 1 for for

and 0 for Equation (2.130) can be seen to be a nonlinear differential equa-

tion for which a simple analytical solution does not exist. Numerical methods can be used

to solve Eq. (2.130) conveniently (see Example 2.21). Equation (2.130), however, can be

solved analytically if we break the time axis into segments separated by (i.e., time

intervals with different directions of motion). To find the solution using this procedure, let

us assume the initial conditions as

(2.131) x 
#
(t = 0) = 0

 x(t = 0) = x0

x 
#
= 0

y = 0.y 6 0,
y 7 0, -1

mx
$
+ mmg sgn(x 

#
) + kx = 0

N = mg

x(t)

x0

tO

k

k

  x0 
k

x0 
k

pk

p
vn

2p
vn

3p
vn

4p
vn

mN

mN

k

mN
4mN

2mNvn

2mN

FIGURE 2.43 Motion of the mass with Coulomb damping.
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That is, the system starts with zero velocity and displacement at Since at

the motion starts from right to left. Let denote the amplitudes of

motion at successive half cycles. Using Eqs. (2.129) and (2.131), we can evaluate the con-

stants and :

Thus Eq. (2.129) becomes

(2.132)

This solution is valid for half the cycle only that is, for When 

the mass will be at its extreme left position and its displacement from equilibrium position

can be found from Eq. (2.132):

Since the motion started with a displacement of and, in a half cycle, the value of x

became the reduction in magnitude of x in time is 

In the second half cycle, the mass moves from left to right, so Eq. (2.127) is to be used.

The initial conditions for this half cycle are

and

Thus the constants in Eq. (2.127) become

so that Eq. (2.127) can be written as

(2.133)x(t) = ¢x0 -
3mN

k
 cos vnt -

mN

k

-A1 = -x0 +
3mN

k
,  A2 = 0

 = bvalue of -vn¢x0 -
mN

k
 sin vnt at t =

p

vn
r = 0

 x 
#
(t = 0) = value of x 

#
 at t =

p

vn
  in Eq. (2.132)

x(t = 0) = value of x at t =
p

vn
 in Eq. (2.132) = -  ¢x0 -

2mN

k

2mN/k.p/vn-[x0 - (2mN/k)],
x = x0

-x1 = x¢ t =
p

vn
= ¢x0 -

mN

k
 cos p +

mN

k
= - ¢x0 -

2mN

k

t = p/vn,0 t p/vn.

x(t) = ¢x0 -
mN

k
 cos vnt +

mN

k

A3 = x0 -
mN

k
,    A4 = 0

A4A3

x0, x1, x2, Át = 0,
x = x0t = 0.x0
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This equation is valid only for the second half cycle that is, for At

the end of this half cycle the value of x(t) is

and

These become the initial conditions for the third half cycle, and the procedure can be con-

tinued until the motion stops. The motion stops when since the restoring

force exerted by the spring (kx) will then be less than the friction force Thus the num-

ber of half cycles (r) that elapse before the motion ceases is given by

that is,

(2.134)

Note the following characteristics of a system with Coulomb damping:

1. The equation of motion is nonlinear with Coulomb damping, while it is linear with

viscous damping.

2. The natural frequency of the system is unaltered with the addition of Coulomb damp-

ing, while it is reduced with the addition of viscous damping.

3. The motion is periodic with Coulomb damping, while it can be nonperiodic in a vis-

cously damped (overdamped) system.

4. The system comes to rest after some time with Coulomb damping, whereas the

motion theoretically continues forever (perhaps with an infinitesimally small ampli-

tude) with viscous and hysteresis damping.

5. The amplitude reduces linearly with Coulomb damping, whereas it reduces exponen-

tially with viscous damping.

6. In each successive cycle, the amplitude of motion is reduced by the amount 

so the amplitudes at the end of any two consecutive cycles are related:

(2.135)Xm = Xm -  1 -

4mN

k

4mN/k,

r Ú d x0 -

mN

k

2mN

k

t

x0 - r  

2mN

k

mN

k

mN.
xn mN/k,

x 
# ¢ t =

p

vn
 in Eq. (2.133) = 0

x2 = x¢ t =
p

vn
 in Eq. (2.133) = x0 -

4mN

k

p/vn t 2p/vn.
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As the amplitude is reduced by an amount in one cycle (i.e., in time ),

the slope of the enveloping straight lines (shown dotted) in Fig. 2.43 is

The final position of the mass is usually displaced from equilibrium position

and represents a permanent displacement in which the friction force is locked. Slight

tapping will usually make the mass come to its equilibrium position.

(x = 0)

-  ¢4mN

k
n ¢2p

vn
= -  ¢ 2mNvn

pk

2p/vn4mN/k

2.9.3
Torsional
Systems 
with Coulomb
Damping

If a constant frictional torque acts on a torsional system, the equation governing the angu-

lar oscillations of the system can be derived, similar to Eqs. (2.126) and (2.128), as

(2.136)

and

(2.137)

where T denotes the constant damping torque (similar to for linear vibrations). The

solutions of Eqs. (2.136) and (2.137) are similar to those for linear vibrations. In particular,

the frequency of vibration is given by

(2.138)

and the amplitude of motion at the end of the rth half cycle is given by

(2.139)

where is the initial angular displacement at (with at ). The motion

ceases when

(2.140)r Ú d u0 -
T

kt

2T

kt

t
t = 0u  * = 0t = 0u0

ur = u0 - r 

2T

kt

(ur)

vn = A
kt

J0

mN

J0 u
  + + ktu = T

J0 u
  + + ktu = -

 
T

E X A M P L E  2 . 1 4
Coefficient of Friction from Measured Positions of Mass

A metal block, placed on a rough surface, is attached to a spring and is given an initial displacement

of 10 cm from its equilibrium position. After five cycles of oscillation in 2 s, the final position of the

metal block is found to be 1 cm from its equilibrium position. Find the coefficient of friction between

the surface and the metal block.

Solution: Since five cycles of oscillation were observed to take place in 2 s, the period is 

and hence the frequency of oscillation is Since

the amplitude of oscillation reduces by

4mN

k
=

4mmg

k

vn = 2k
m =

2p
tn
=

2p
0.4 = 15.708 rad/s.2/5 = 0.4 s,

(tn)
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in each cycle, the reduction in amplitude in five cycles is

or

*

m =
0.09k

20mg
=

0.09vn
2

20g
=

0.09(15.708)2

20(9.81)
= 0.1132

5¢4mmg

k
= 0.10 - 0.01 = 0.09 m

E X A M P L E  2 . 1 5
Pulley Subjected to Coulomb Damping

A steel shaft of length 1 m and diameter 50 mm is fixed at one end and carries a pulley of mass moment

of inertia at the other end. A band brake exerts a constant frictional torque of 400 N-m around

the circumference of the pulley. If the pulley is displaced by 6 and released, determine (1) the number

of cycles before the pulley comes to rest and (2) the final settling position of the pulley.

Solution:

1. The number of half cycles that elapse before the angular motion of the pulley ceases is given

by Eq. (2.140): 

(E.1)

where spring constant

of the shaft given by

and friction torque applied to the Equation (E.1) gives

Thus the motion ceases after six half cycles.

2. The angular displacement after six half cycles is given by Eq. (2.120):  

u = 0.10472 - 6 * 2¢ 400

49,087.5
= 0.006935 rad = 0.39734°

r Ú

0.10472 - ¢ 400

49,087.5¢ 800

49,087.5

= 5.926

pulley = 400 N-m.T = constant

kt =
GJ

l
=

(8 * 1010)b p
32

 (0.05)4 r
1

= 49,087.5 N-m/rad

u0 = initial angular displacement = 6° = 0.10472 rad, kt = torsional

r Ú d u0 -
T

kt

2T

kt

t

°
25 kg-m2
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*X

Xx

cvX

*cvX

kx

cv*X
2 * x2

k
c

F(t)x(t)

(a) (b)

FIGURE 2.44 Spring-viscous-damper system.

Thus the pulley stops at 0.39734º from the equilibrium position on the same side of the initial

displacement.

*

2.10 Free Vibration with Hysteretic Damping
Consider the spring-viscous-damper arrangement shown in Fig. 2.44(a). For this system,

the force F needed to cause a displacement x(t) is given by

(2.141)

For a harmonic motion of frequency and amplitude X,

(2.142)

Equations (2.141) and (2.142) yield

(2.143) = kx ; cv2X2
- x2

 = kx ; cv2X2
- (X sin vt)2

 F(t) = kX sin vt + cXv cos vt

x(t) = X sin vt

v

F = kx + cx 
#
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When F versus x is plotted, Eq. (2.143) represents a closed loop, as shown in Fig. 2.44(b).

The area of the loop denotes the energy dissipated by the damper in a cycle of motion and

is given by

(2.144)

Equation (2.144) has been derived in Section 2.6.4 also (see Eq. (2.98)).

As stated in Section 1.9, the damping caused by the friction between the internal

planes that slip or slide as the material deforms is called hysteresis (or solid or structural)

damping. This causes a hysteresis loop to be formed in the stress-strain or force-displacement

curve (see Fig. 2.45(a)). The energy loss in one loading and unloading cycle is equal to the

area enclosed by the hysteresis loop [2.11 2.13]. The similarity between Figs. 2.44(b) and

2.45(a) can be used to define a hysteresis damping constant. It was found experimentally

that the energy loss per cycle due to internal friction is independent of the frequency but

approximately proportional to the square of the amplitude. In order to achieve this

observed behavior from Eq. (2.144), the damping coefficient c is assumed to be inversely

proportional to the frequency as

(2.145)

where h is called the hysteresis damping constant. Equations (2.144) and (2.145) give

(2.146)¢W = phX2

c =
h

v

 = pvcX2

 ¢W = CF dx = L
2p/v

0
(kX sin vt + cXv cos vt)(vX cos vt)dt

Stress (force)

Hysteresis
loop

Loading

Unloading

Area

Strain
(displacement)

k

F(t)x(t)

(a) (b)

h

FIGURE 2.45 Hysteresis loop.
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Complex Stiffness. In Fig. 2.44(a), the spring and the damper are connected in parallel,

and for a general harmonic motion, the force is given by

(2.147)

Similarly, if a spring and a hysteresis damper are connected in parallel, as shown in Fig.

2.45(b), the force-displacement relation can be expressed as

(2.148)

where

(2.149)

is called the complex stiffness of the system and is a constant indicating a dimen-

sionless measure of damping.

Response of the System. In terms of the energy loss per cycle can be expressed as

(2.150)

Under hysteresis damping, the motion can be considered to be nearly harmonic (since 

is small), and the decrease in amplitude per cycle can be determined using energy balance.

For example, the energies at points P and Q (separated by half a cycle) in Fig. 2.46 are

related as

or

(2.151)
Xj

Xj+0.5
= A

2 + pb

2 - pb

kXj
2

2
-

pkbXj
2

4
-

pkbXj+0.5
2

4
=

kXj+0.5
2

2

¢W

¢W = pkbX2

b,

b = h/k

k + ih = k+1 + i 
h

k
* = k(1 + i b)

F = (k + ih)x

F = kXeivt + cviXeivt = (k + ivc)x

x = Xeivt,

t

x(t)

O
P

Xj

Xj*0.5

Xj*1

R

Q

FIGURE 2.46 Response of a hysteretically damped system.
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Similarly, the energies at points Q and R give

(2.152)

Multiplication of Eqs. (2.151) and (2.152) gives

(2.153)

The hysteresis logarithmic decrement can be defined as

(2.154)

Since the motion is assumed to be approximately harmonic, the corresponding frequency

is defined by [2.10]:

(2.155)

The equivalent viscous damping ratio can be found by equating the relation for the log-

arithmic decrement 

(2.156)

Thus the equivalent damping constant is given by

(2.157)

Note that the method of finding an equivalent viscous damping coefficient for a struc-

turally damped system is valid only for harmonic excitation. The above analysis assumes

that the system responds approximately harmonically at the frequency v.

ceq = cc
# zeq = 22mk #

b

2
= b2mk =

bk

v
=

h

v

ceq

 zeq =
b

2
=

h

2k

 d M 2pzeq M pb =
ph

k

d:

zeq

v = A
k

m

d = ln + Xj

Xj+1
* M ln (1 + pb) M pb

Xj

Xj+1
=

2 + pb

2 - pb
=

2 - pb + 2pb

2 - pb
M 1 + pb = constant

Xj+0.5

Xj+1
= A

2 + pb

2 - pb

E X A M P L E  2 . 1 6
Estimation of Hysteretic Damping Constant

The experimental measurements on a structure gave the force-deflection data shown in Fig. 2.47.

From this data, estimate the hysteretic damping constant and the logarithmic decrement 

Solution

Approach: We equate the energy dissipated in a cycle (area enclosed by the hysteresis loop) to 

of Eq. (2.146).

¢W

d.b
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FIGURE 2.47 Force-deflection curve.
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The energy dissipated in each full load cycle is given by the area enclosed by the hysteresis curve.

Each square in Fig. 2.47 denotes The area enclosed by the loop can be

found as area

square units. This area represents an energy of

From Eq. (2.146), we have

(E.1)

Since the maximum deflection X is 0.008 m and the slope of the force-deflection curve (given

approximately by the slope of the line OF) is the hysteretic

damping constant h is given by

(E.2)

and hence

The logarithmic decrement can be found as

(E.3)

*

d M pb = p(0.248679) = 0.78125

b =
h

k
=

12,433.95

50,000
= 0.248679

h =
¢W

pX2
=

2.5

p(0.008)2
= 12,433.95

k = 400/8 = 50 N/mm = 50,000 N/m,

¢W = phX2
= 2.5 N-m

12.25 * 200/1,000 = 2.5 N-m.

1
2 (1.25)(1.8) + (1.25)(8) +

1
2 (1.25)(1.8) = 12.25

ACB + area ABDE + area DFE M
1
2 (AB)(CG) + (AB)(AE) +

1
2 (DE)(FH) =

100 * 2 = 200 N-mm.

E X A M P L E  2 . 1 7
Response of a Hysteretically Damped Bridge Structure

A bridge structure is modeled as a single-degree-of-freedom system with an equivalent mass of

and an equivalent stiffness of During a free-vibration test, the ratio of

successive amplitudes was found to be 1.04. Estimate the structural damping constant and the

approximate free-vibration response of the bridge.

Solution: Using the ratio of successive amplitudes, Eq. (2.154) yields the hysteresis logarithmic

decrement as

or

The equivalent viscous damping coefficient can be determined from Eq. (2.157) as

(E.1)ceq =
bk

v
=

bk

A
k

m

= b2km

(ceq)

1 + pb = 1.04 or b =
0.04

p
= 0.0127

d = ln + Xj

Xj+1

* = ln(1.04) = ln(1 + pb)

(d)

(b)
25 * 106 N/m.5 * 105 kg
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Using the known values of the equivalent stiffness (k) and the equivalent mass (m) of the bridge,

Eq. (E.1) yields

The equivalent critical damping constant of the bridge can be computed using Eq. (2.65) as

Since the bridge is underdamped, and hence its free-vibration response is given by Eq. (2.72) as

where

and and denote the initial displacement and initial velocity given to the bridge at the start of

free vibration.

*

2.11 Stability of Systems
Stability is one of the most important characteristics for any vibrating system. Although

many definitions can be given for the term stability depending on the kind of system or the

point of view, we consider our definition for linear and time-invariant systems (i.e., sys-

tems for which the parameters m, c, and k do not change with time). A system is defined to

be asymptotically stable (called stable in controls literature) if its free-vibration response

approaches zero as time approaches infinity. A system is considered to be unstable if its

free-vibration response grows without bound (approaches infinity) as time approaches

infinity. Finally, a system is said to be stable (called marginally stable in controls litera-

ture) if its free-vibration response neither decays nor grows, but remains constant or oscil-

lates as time approaches infinity. It is evident that an unstable system whose free-vibration

response grows without bounds can cause damage to the system, adjacent property, or

human life. Usually, dynamic systems are designed with limit stops to prevent their

responses from growing with no limit.

As will be seen in Chapters 3 and 4, the total response of a vibrating system, subjected

to external forces/excitations, is composed of two parts one the forced response and the

other the free-vibration response. For such systems, the definitions of asymptotically sta-

ble, unstable, and stable systems given above are still applicable. This implies that, for sta-

ble systems, only the forced response remains as the free-vibration response approaches

zero as time approaches infinity.

Stability can be interpreted in terms of the roots of the characteristic roots of the sys-

tem. As seen in Section 2.7, the roots lying in the left half-plane (LHP) yield either pure

exponential decay or damped sinusoidal free-vibration responses. These responses decay

x 
#

0x0

z =

ceq

cc
=

40.9013 * 103

7071.0678 * 103
= 0.0063

x(t) = e- 
zvntbx0 cos 21 - z2 vnt +

x 
#

0 + zvnx0

21 - z2
 vn

 sin 21 - z2 vnt r
ceq 6 cc,

cc = 22km = 22(25 * 106)(5 * 105) = 7071.0678 * 103 N-s/m

ceq = (0.0127)2(25 * 106)(5 * 105) = 44.9013 * 103 N-s/m
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to zero as time approaches infinity. Thus, systems whose characteristics roots lie in the left

half of the s-plane (with a negative real part) will be asymptotically stable. The roots lying in

the right half-plane yield either pure exponentially increasing or exponentially increasing

sinusoidal free-vibration responses. These free-vibration responses approach infinity as time

approaches infinity. Thus, systems whose characteristic roots lie in the right half of the s-

plane (with positive real part) will be unstable. Finally, the roots lying on the imaginary axis

of the s-plane yield pure sinusoidal oscillations as free-vibration response. These responses

neither increase nor decrease in amplitude as time grows. Thus, systems whose characteristic

roots lie on the imaginary axis of the s-plane (with zero real part) will be stable.3

Notes:

1. It is evident, from the definitions given, that the signs of the coefficients of the char-

acteristic equation, Eq. (2.107), determine the stability behavior of a system. For

example, from the theory of polynomial equations, if there is any number of negative

terms or if any term in the polynomial in s is missing, then one of the roots will be

positive, which results in an unstable behavior of the system. This aspect is consid-

ered further in Section 3.11 as well as in Section 5.8 in the form of the Routh-Hurwitz

stability criterion.

2. In an unstable system, the free-vibration response may grow without bound with no

oscillations or it may grow without bound with oscillations. The first behavior is

called divergent instability and the second is called flutter instability. These cases are

also known as self-excited vibration (see Section 3.11).

3. If a linear model of a system is asymptotically stable, then it is not possible to find a

set of initial conditions for which the response approaches infinity. On the other hand,

if the linear model of the system is unstable, it is possible that certain initial conditions

might make the response approach zero as time increases. As an example, consider a

system governed by the equation of motion with characteristic roots given

by Thus the response is given by where and 

are constants. If the initial conditions are specified as and we

find that and and hence the response becomes which 

approaches zero as time increases to infinity.

4. Typical responses corresponding to different types of stability are shown in 

Figs. 2.48(a) (d).

5. Stability of a system can also be explained in terms of its energy. According to this

scheme, a system is considered to be asymptotically stable, stable, or unstable if its

energy decreases, remains constant, or increases, respectively, with time. This idea

forms the basis for Lyapunov stability criterion [2.14, 2.15].

6. Stability of a system can also be investigated based on how sensitive the response or

motion is to small perturbations (or variations) in the parameters (m, c and k) and/or

small perturbations in the initial conditions.

x(t) = e-t,C2 = 0C1 = 1

x
#
(0) = -1,x(0) = 1

C2C1x(t) = C1e
-t

+ C2et,s
1,2

= <1.
x
...

- x = 0

3Strictly speaking, the statement is true only if the roots that lie on the imaginary axis appear with multiplicity
one. If such roots appear with multiplicity the system will be unstable because the free-vibration 

response of such systems will be of the form Ctn sin (vt + f).

n 7 1,
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E X A M P L E  2 . 1 8

x (t)

x (t)

x (t)

x (t)

O

O

O

O

Stable system

Asymptotically stable system

Unstable system (with divergent instability)

Unstable system (with flutter instability)

t

t

t

t

(a)

(b)

(c)

(d)

FIGURE 2.48 Different types of stability.

Stability of a System

Consider a uniform rigid bar, of mass m and length l, pivoted at one end and connected symmetri-

cally by two springs at the other end, as shown in Fig. 2. 49. Assuming that the springs are unstretched

when the bar is vertical, derive the equation of motion of the system for small angular displacements

of the bar about the pivot point, and investigate the stability behavior of the system.(u)
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Solution: When the bar is displaced by an angle the spring force in each spring is the

total spring force is The gravity force acts vertically downward through the

center of gravity, G. The moment about the point of rotation O due to the angular acceleration is

Thus the equation of motion of the bar, for rotation about the point O, can be

written as

(E.1)

For small oscillations, Eq. (E.1) reduces to

(E.2)

or

(E.3)

where

(E.4)

The characteristic equation is given by

(E.5)

and hence the solution of Eq. (E.2) depends on the sign of as indicated below.a
2

s2
+ a

2
= 0

a
2
= + 12kl2

- 3Wl

2ml2
*

u
  * + a

2 u = 0

ml2

3
 u

  * + 2kl2
u -

Wl

2
 u = 0

ml2

3
 u

  * + (2kl sin u)l cos u - W 

l

2
 sin u = 0

J0u
  * = (ml2/3) u  *.

u
  *

W = mg2kl sin u.
kl sin u;u,

(a) (b)

l

k kA

G

O

mg

l
2

G

l

mg

O

l cos u u

kl sin u kl sin u

l sin u

FIGURE 2.49 Stability of a rigid bar.
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Case 1. When the solution of Eq. (E.2) represents a stable system with

stable oscillations and can be expressed as

(E.6)

where and are constants and

(E.7)

Case 2. When Eq. (E.2) reduces to and the solution can be

obtained directly by integrating twice as

(E.8)

For the initial conditions and the solution becomes

(E.9)

Equation (E.9) shows that the system is unstable with the angular displacement increasing linearly at

a constant velocity However, if Eq. (E.9) denotes a stable or static equilibrium position

with that is, the pendulum remains in its original position, defined by 

Case 3. When the solution of Eq. (E.2) can be expressed as

(E.10)

where and are constants. For the initial conditions and Eq.

(E.10) becomes

(E.11)

Equation (E.11) shows that increases exponentially with time; hence the motion is unstable. The 

physical reason for this is that the restoring moment due to the spring which tries to bring

the system to the equilibrium position, is less than the nonrestoring moment due to gravity

which tries to move the mass away from the equilibrium position.

*

2.12 Examples Using MATLAB

[-W(l/2)u],

(2kl2
u),

u(t)

u(t) =
1

2a
 [(au0 + u

  *0)eat
+ (au0 - u

  *0)e-at]

u
  *(t = 0) = u

  *0,u(t = 0) = u0B2B1

u(t) = B1e
at
+ B2e-at

(12kl2
- 3Wl)/2ml2

6 0,

u = u0.u = u0

u0 = 0,u0.

u(t) = u
  *0t + u0

u
  *(t = 0) = u

  *0,u(t = 0) = u0

u(t) = C1t + C2

u  + = 0(12kl2
- 3Wl)/2ml2

= 0,

vn = + (12kl2
- 3Wl

2ml2
*1/2

A2A1

u(t) = A1 cos vn t + A2 sin vn t

(12kl2
- 3Wl)/2ml2

7 0,

E X A M P L E  2 . 1 9
Variations of Natural Frequency and Period with Static Deflection

Plot the variations of the natural frequency and the time period with static deflection of an undamped

system using MATLAB.

Solution: The natural frequency and the time period are given by Eqs. (2.28) and (2.30):

vn = + g

dst

*1/2

,    tn = 2p+ dst

g
* 1/2

(tn)(v
n
)
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Using and are plotted over the range of to 0.5 using a MATLAB program.

% Ex2_19.m

g = 9.81;

for i = 1: 101

t(i) = 0.01 + (0.5-0.01) * (i-1)/100;

w(i) = (g/t(i))^0.5;

tao(i) = 2 * pi * (t(i)/g)^0.5;

end

plot(t,w);

gtext( w_n );

hold on;

plot(t, tao);

gtext( T_n );

xlabel( Delta_s_t );

title( Example 2.17 );

dst = 0tng = 9.81 m/s2, vn

0
0

5

10

15

20

25

30

35

0.05 0.1 0.15 0.2 0.25

Deltast

Example 2.19

0.3 0.35 0.4 0.45 0.5

wn

Tn

*

Variations of natural frequency and time period.

E X A M P L E  2 . 2 0
Free-Vibration Response of a Spring-Mass System

A spring-mass system with a mass of and stiffness 500 lb/in. is subject to an initial dis-

placement of and an initial velocity of Plot the time variations of the

mass s displacement, velocity, and acceleration using MATLAB.

x 
#

0 = 4.0 in/sec.x0 = 3.0 in.
20 lb-sec2>in.
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Solution: The displacement of an undamped system can be expressed as (see Eq. (2.23)):

(E.1)

where

Thus Eq. (E.1) yields

(E.2)

(E.3)

(E.4)x
$
(t) = -77.62 sin (5t + 1.3102) in./sec2

x 
#
(t) = 15.524 cos (5t + 1.3102) in./sec

x(t) = 3.1048 sin (5t + 1.3102) in.

 f0 = tan-1¢x0vn

x 
#

0
= tan-1¢ (3.0)(5.0)

4.0
= 75.0686° = 1.3102 rad

 A0 = Bx0
2
+ ¢ x 

#

0

vn

2R 1/2

= B(3.0)2
+ ¢4.0

5.0

2R 1/2

= 3.1048 in.

vn = A
k

m
= A

500

20
= 5 rad/sec

x(t) = A0 sin(vnt + f0)

0
*4

*2

0

x
(t

)

2

4

1 2 3 4 5 6

0
*100

*50

0

x
(t

)

50

100

1 2 3

t

4 5 6

0
*20

*10

0

x
(t

)

10

20

1 2 3 4 5 6

..

.

Example 2.20

Response of an undamped system.
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Equations (E.2) (E.4) are plotted using MATLAB in the range to 6 sec.

% Ex2_20.m

for i = 1: 101

t(i) = 6 * (i-1)/100;

x(i) = 3.1048 * sin(5 * t(i) + 1.3102);

x1(i) = 15.524 * cos(5 * t(i) + 1.3102);

x2(i) = -77.62 * sin(5 * t(i) + 1.3102);

end

subplot (311);

plot (t,x);

ylabel ( x(t) );

title ( Example 2.18 );

subplot (312);

plot (t,x1);

ylabel ( x^.(t) );

subplot (313);

plot (t,x2);

xlabel ( t );

ylabel ( x^.^.(t) );

*

t = 0

E X A M P L E  2 . 2 1
Free-Vibration Response of a System with Coulomb Damping

Find the free-vibration response of a spring-mass system subject to Coulomb damping for the fol-

lowing initial conditions: .

Data:

Solution: The equation of motion can be expressed as

(E.1)

In order to solve the second-order differential equation, Eq. (E.1), using the Runge-Kutta method

(see Appendix F), we rewrite Eq. (E.1) as a set of two first-order differential equations as follows:

(E.2)

(E.3)

Equations (E.2) and (E.3) can be expressed in matrix notation as

(E.4)

where

X
!

= b x1(t)

x2(t)
r ,    f

:

= b f1(x1, x2)

f2(x1, x2)
r ,    X

!
(t = 0) = b x1(0)

x2(0)
r

X
!#

 = f
:

(X
!
)

 x 
#
2 = -mg sgn(x2) -

k

m
x1 K f2(x1, x2)

x 
#
1 = x2 K f1(x1, x2)

x1 = x,   x2 = x 
#
1 = x 

#

mx
$

+ mmg sgn(x 
#
) + kx = 0

m = 10 kg, k = 200 N/m, m = 0.5

x(0) = 0.5 m, x 
#
(0) = 0
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The MATLAB program ode23 is used to find the solution of Eq. (E.4) as shown below.

% Ex2_21.m

% This program will use dfunc1.m

tspan = [0: 0.05: 8];

x0 = [5.0; 0.0];

[t, x] = ode23 ( dfuncl , tspan, x0);

plot (t, x(:, 1));

xlabel ( t );

ylabel ( x(1) );

title ( Example 2.19 );

% dfunc1.m

function f = dfuncl (t, x)

f = zeros (2, 1);

f(1) = x(2);

f(2) = -0.5 * 9.81 * sign(x(2)) - 200 * x(1) / 10;

*

0 1 2 3 4

t

5 6 7 8
*5

*4

*3

*2

*1

0

1

2

3

4

5

x
(1

)

Example 2.21

Solution of Eq. (E4):
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E X A M P L E  2 . 2 2
Free Vibration Response of a Viscously Damped System Using MATLAB

Develop a general-purpose MATLAB program, called Program2.m, to find the free-vibration

response of a viscously damped system. Use the program to find the response of a system with the

following data:

Solution: Program2.m is developed to accept the following input data:

stiffness

constant

displacement

velocity

of time steps at which values of x(t) are to be found

interval between consecutive time steps 

The program gives the following output:

step number i, time

The program also plots the vatiations of and with time.

>> program2

Free vibration analysis of a single degree of freedom analysis

Data:

m= 4.50000000e+002

k= 2.65192000e+004

c= 1.00000000e+003

x0= 5.39657000e-001

xd0= 1.00000000e+000

n= 100

delt= 2.50000000e-002

system is under damped

Results:

i time(i) x(i) xd(i) xdd(i)

1 2.500000e-002 5.540992e-001 1.596159e-001 -3.300863e+001

2 5.000000e-002 5.479696e-001 -6.410545e-001 -3.086813e+001

3 7.500000e-002 5.225989e-001 -1.375559e+000 -2.774077e+001

4 1.000000e-001 4.799331e-001 -2.021239e+000 -2.379156e+001

5 1.250000e-001 4.224307e-001 -2.559831e+000 -1.920599e+001

6 1.500000e-001 3.529474e-001 -2.977885e+000 -1.418222e+001

.

.

.

96 2.400000e+000 2.203271e-002 2.313895e-001 -1.812621e+000

97 2.425000e+000 2.722809e-002 1.834092e-001 -2.012170e+000

98 2.450000e+000 3.117018e-002 1.314707e-001 -2.129064e+000

99 2.475000e+000 3.378590e-002 7.764312e-002 -2.163596e+000

100 2.500000e+000 3.505350e-002 2.395118e-002 -2.118982e+000

x
$

x, x 
#
,

(i), x(i), x 
#
(i), x

$
(i)

(¢t)delt = time

n = number

xd0 = initial

x0 = initial

c = damping

k = spring

m = mass

m = 450.0, k = 26519.2,   c = 1000.0,   x0 = 0.539657,   x 
#
0 = 1.0
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CHAPTER SUMMARY

We considered the equations of motion and their solutions for the free vibration of undamped and

damped single-degree-of-freedom systems. Four different methods namely, Newton s second law

of motion, D  Alembert s principle, the principle of virtual displacements, and the principle of con-

servation of energy were presented for deriving the equation of motion of undamped systems. Both

translational and torsional systems were considered. The free-vibration solutions have been presented

for undamped systems. The equation of motion, in the form of a first-order differential equation, was

considered for a mass-damper system (with no spring), and the idea of time constant was introduced.

The free-vibration solution of viscously damped systems was presented along with the concepts

of underdamped, overdamped, and critically damped systems. The free-vibration solutions of systems

with Coulomb and hysteretic damping were also considered. The graphical representation of charac-

teristic roots in the complex plane and the corresponding solutions were explained. The effects of vari-

ation of the parameters m, c, and k on the characteristic roots and their representations using root locus

plots were also considered. The identification of the stability status of a system was also explained.

Now that you have finished this chapter, you should be able to answer the review questions and

solve the problems given below.

*

0 0.5 1

t

1.5 2 2.5
*40

*30

*20

*10
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10

x(t)

x
(t
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 x
d

(t
),

 x
d
d

(t
) xd(t)

xdd(t)
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REVIEW QUESTIONS

2.1 Give brief answers to the following:

1. Suggest a method for determining the damping constant of a highly damped vibrating

system that uses viscous damping.

2. Can you apply the results of Section 2.2 to systems where the restoring force is not pro-

portional to the displacement that is, where k is not a constant?
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3. State the parameters corresponding to m, c, k, and x for a torsional system.

4. What effect does a decrease in mass have on the frequency of a system?

5. What effect does a decrease in the stiffness of the system have on the natural period?

6. Why does the amplitude of free vibration gradually diminish in practical systems?

7. Why is it important to find the natural frequency of a vibrating system?

8. How many arbitrary constants must a general solution to a second-order differential

equation have? How are these constants determined?

9. Can the energy method be used to find the differential equation of motion of all single-

degree-of-freedom systems?

10. What assumptions are made in finding the natural frequency of a single-degree-of-

freedom system using the energy method?

11. Is the frequency of a damped free vibration smaller or greater than the natural frequency

of the system?

12. What is the use of the logarithmic decrement?

13. Is hysteresis damping a function of the maximum stress?

14. What is critical damping, and what is its importance?

15. What happens to the energy dissipated by damping?

16. What is equivalent viscous damping? Is the equivalent viscous-damping factor a constant?

17. What is the reason for studying the vibration of a single-degree-of-freedom system?

18. How can you find the natural frequency of a system by measuring its static deflection?

19. Give two practical applications of a torsional pendulum.

20. Define these terms: damping ratio, logarithmic decrement, loss coefficient, and specific

damping capacity.

21. In what ways is the response of a system with Coulomb damping different from that of

systems with other types of damping?

22. What is complex stiffness?

23. Define the hysteresis damping constant.

24. Give three practical applications of the concept of center of percussion.

25. What is the order of the equation of motion given by 

26. Define the time constant.

27. What is a root locus plot?

28. What is the significance of 

29. What is a time-invariant system?

2.2 Indicate whether each of the following statements is true or false:

1. The amplitude of an undamped system will not change with time.

2. A system vibrating in air can be considered a damped system.

3. The equation of motion of a single-degree-of-freedom system will be the same whether

the mass moves in a horizontal plane or an inclined plane.

4. When a mass vibrates in a vertical direction, its weight can always be ignored in deriving

the equation of motion.

5. The principle of conservation of energy can be used to derive the equation of motion of

both damped and undamped systems.

6. The damped frequency can in some cases be larger than the undamped natural frequency

of the system.

7. The damped frequency can be zero in some cases.

c 6 0?

mv
#
+ cv = 0?
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8. The natural frequency of vibration of a torsional system is given by where k and 

m denote the torsional spring constant and the polar mass moment of inertia, respectively.

9. Rayleigh s method is based on the principle of conservation of energy.

10. The final position of the mass is always the equilibrium position in the case of Coulomb

damping.

11. The undamped natural frequency of a system is given by where is the static

deflection of the mass.

12. For an undamped system, the velocity leads the displacement by 

13. For an undamped system, the velocity leads the acceleration by 

14. Coulomb damping can be called constant damping.

15. The loss coefficient denotes the energy dissipated per radian per unit strain energy.

16. The motion diminishes to zero in both underdamped and overdamped cases.

17. The logarithmic decrement can be used to find the damping ratio.

18. The hysteresis loop of the stress-strain curve of a material causes damping.

19. The complex stiffness can be used to find the damping force in a system with hysteresis

damping.

20. Motion in the case of hysteresis damping can be considered harmonic.

21. In the s-plane, the locus corresponding to constant natural frequency will be a circle.

22. The characteristic equation of a single-degree-of-freedom system can have one real root

and one complex root.

2.3 Fill in the blanks with proper words:

1. The free vibration of an undamped system represents interchange of _____ and _____

energies.

2. A system undergoing simple harmonic motion is called a _____ oscillator.

3. The mechanical clock represents a _____ pendulum.

4. The center of _____ can be used advantageously in a baseball bat.

5. With viscous and hysteresis damping, the motion _____ forever, theoretically.

6. The damping force in Coulomb damping is given by _____.

7. The _____ coefficient can be used to compare the damping capacity of different engi-

neering materials.

8. Torsional vibration occurs when a _____ body oscillates about an axis.

9. The property of _____ damping is used in many practical applications, such as large

guns.

10. The logarithmic decrement denotes the rate at which the _____ of a free damped vibra-

tion decreases.

11. Rayleigh s method can be used to find the _____ frequency of a system directly.

12. Any two successive displacements of the system, separated by a cycle, can be used to

find the _____ decrement.

13. The damped natural frequency can be expressed in terms of the undamped natural

frequency as _____.

14. The time constant denotes the time at which the initial response reduces by  _____ percent.

15. The term decays _____ than the term as time t increases.

16. In the s-plane, lines parallel to real axis denote systems having different _____ frequencies.
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2.4 Select the most appropriate answer out of the multiple choices given:

1. The natural frequency of a system with mass m and stiffness k is given by:

a. b. c.

2. In Coulomb damping, the amplitude of motion is reduced in each cycle by:

a. b. c.

3. The amplitude of an undamped system subject to an initial displacement 0 and initial

velocity is given by:

a. b. c.

4. The effect of the mass of the spring can be accounted for by adding the following fraction

of its mass to the vibrating mass:

a. b. c.

5. For a viscous damper with damping constant c, the damping force is:

a. b. cx c.

6. The relative sliding of components in a mechanical system causes:

a. dry-friction damping b. viscous damping c. hysteresis damping

7. In torsional vibration, the displacement is measured in terms of a:

a. linear coordinate b. angular coordinate c. force coordinate

8. The damping ratio, in terms of the damping constant c and critical damping constant

is given by:

a. b. c.

9. The amplitude of an underdamped system subject to an initial displacement and initial

velocity 0 is given by:

a. b. c.

10. The phase angle of an undamped system subject to an initial displacement and initial

velocity 0 is given by:

a. b. c. 0

11. The energy dissipated due to viscous damping is proportional to the following power of

the amplitude of motion:

a. 1 b. 2 c. 3

12. For a critically damping system, the motion will be:

a. periodic b. aperiodic c. harmonic

13. The energy dissipated per cycle in viscous damping with damping constant c during the

simple harmonic motion is given by:

a. b. c.

14. For a vibrating system with a total energy W and a dissipated energy per cycle, the

specific damping capacity is given by:

a. b. c.

15. If the characteristic roots have positive real values, the system response will be:

a. stable b. unstable c. asymptotically stable

16. The frequency of oscillation of the response of a system will be higher if the imaginary

part of the roots is:

a. smaller b. zero c. larger
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17. If the characteristic roots have a zero imaginary part, the response of the system will be:

a. oscillatory b. nonoscillatory c. steady

18. The shape of the root locus of a single-degree-of-freedom system for is:

a. circular b. horizontal line c. radial line

19. The shape of the root locus of a single-degree-of-freedom system as k is varied is:

a. vertical and horizontal lines b. circular arc c. radial lines

2.5 Match the following for a single-degree-of-freedom system with and c = 0.5:m = 1, k = 2,

0 z 1

1. Natural frequency, 

2. Linear frequency, 

3. Natural time period, 

4. Damped frequency, 

5. Critical damping constant, 

6. Damping ratio, 

7. Logarithmic decrement, d

z

cc

vd

tn

fn

vn a. 1.3919

b. 2.8284

c. 2.2571

d. 0.2251

e. 0.1768

f. 4.4429

g. 1.4142

2.6 Match the following for a mass moving with velocity v = 10 m/s:m = 5 kg

Damping force Type of damper

1. 20 N

2. 1.5 N

3. 30 N

4. 25 N

5. 10 N

a. Coulomb damping with a coefficient of friction of 0.3

b. Viscous damping with a damping coefficient 1 N-s/m

c. Viscous damping with a damping coefficient 2 N-s/m

d. Hysteretic damping with a hysteretic damping coefficient of 12 N/m at a 

frequency of 4 rad/s

e. Quadratic damping with damping constant a = 0.25 N-s2/m2(force = av2)

2.7 Match the following characteristics of the s-plane:

Locus Significance

1. Concentric circles

2. Lines parallel to real axis

3. Lines parallel to imaginary axis

4. Radial lines through origin

a. Different values of damped natural frequency

b. Different values of reciprocals of time constant

c. Different values of damping ratio

d. Different values of natural frequency

2.8 Match the following terms related to stability of systems:

Type of system Nature of free-vibration response as time approaches infinity

1. Asymptotically stable

2. Unstable

3. Stable

4. Divergent instability

5. Flutter instability

a. Neither decays nor grows

b. Grows with oscillations

c. Grows without oscillations

d. Approaches zero

e. Grows without bound
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PROBLEMS

Section 2.2 Free Vibration of an Undamped Translational System

2.1 An industrial press is mounted on a rubber pad to isolate it from its foundation. If the rubber pad

is compressed 5 mm by the self weight of the press, find the natural frequency of the system.

2.2 A spring-mass system has a natural period of 0.21 sec. What will be the new period if the

spring constant is (a) increased by 50 percent and (b) decreased by 50 percent?

2.3 A spring-mass system has a natural frequency of 10 Hz. When the spring constant is reduced

by 800 N/m, the frequency is altered by 45 percent. Find the mass and spring constant of the

original system.

2.4 A helical spring, when fixed at one end and loaded at the other, requires a force of 100 N to

produce an elongation of 10 mm. The ends of the spring are now rigidly fixed, one end verti-

cally above the other, and a mass of 10 kg is attached at the middle point of its length. Deter-

mine the time taken to complete one vibration cycle when the mass is set vibrating in the

vertical direction.

2.5 An air-conditioning chiller unit weighing 2,000 lb is to be supported by four air springs (Fig.

2.50). Design the air springs such that the natural frequency of vibration of the unit lies

between 5 rad/s and 10 rad/s.

FIGURE 2.50 (Courtesy of Sound and Vibration.)
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P

l3

l2

l1

k1

m

k3

Q

k2

FIGURE 2.51

2.6 The maximum velocity attained by the mass of a simple harmonic oscillator is 10 cm/s, and

the period of oscillation is 2 s. If the mass is released with an initial displacement of 2 cm,

find (a) the amplitude, (b) the initial velocity, (c) the maximum acceleration, and (d) the

phase angle.

2.7 Three springs and a mass are attached to a rigid, weightless bar PQ as shown in Fig. 2.51.

Find the natural frequency of vibration of the system.

2.8 An automobile having a mass of 2,000 kg deflects its suspension springs 0.02 m under static

conditions. Determine the natural frequency of the automobile in the vertical direction by

assuming damping to be negligible.

2.9 Find the natural frequency of vibration of a spring-mass system arranged on an inclined

plane, as shown in Fig. 2.52.

k1

m k2

u

FIGURE 2.52

2.10 A loaded mine cart, weighing 5,000 lb, is being lifted by a frictionless pulley and a wire rope,

as shown in Fig. 2.53. Find the natural frequency of vibration of the cart in the given position.

2.11 An electronic chassis weighing 500 N is isolated by supporting it on four helical springs, as

shown in Fig. 2.54. Design the springs so that the unit can be used in an environment in

which the vibratory frequency ranges from 0 to 5 Hz.
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2.12 Find the natural frequency of the system shown in Fig. 2.55 with and without the springs 

and in the middle of the elastic beam.

2.13 Find the natural frequency of the pulley system shown in Fig. 2.56 by neglecting the friction

and the masses of the pulleys.

2.14 A weight W is supported by three frictionless and massless pulleys and a spring of stiffness

k, as shown in Fig. 2.57. Find the natural frequency of vibration of weight W for small

oscillations.

k2

k1

Loaded
mine cart

Steel wire rope,
0.05+ diameter

25*

30*

Pulley

50

FIGURE 2.53

FIGURE 2.54 An electronic chassis mounted on

vibration isolators. (Courtesy of Titan SESCO.)
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k1

k2

m

a

b

l

FIGURE 2.55

2.15 A rigid block of mass M is mounted on four elastic supports, as shown in Fig. 2.58. A mass

m drops from a height l and adheres to the rigid block without rebounding. If the spring con-

stant of each elastic support is k, find the natural frequency of vibration of the system

(a) without the mass m, and (b) with the mass m. Also find the resulting motion of the system

in case (b).

2.16 A sledgehammer strikes an anvil with a velocity of 50 ft/sec (Fig. 2.59). The hammer and the

anvil weigh 12 lb and 100 lb, respectively. The anvil is supported on four springs, each of

stiffness Find the resulting motion of the anvil (a) if the hammer remains in

contact with the anvil and (b) if the hammer does not remain in contact with the anvil after

the initial impact.

2.17 Derive the expression for the natural frequency of the system shown in Fig. 2.60. Note that

the load W is applied at the tip of beam 1 and midpoint of beam 2.

k = 100 lb/in.

k k

4k

4k

m

FIGURE 2.56



218 CHAPTER 2 FREE VIBRATION OF SINGLE-DEGREE-OF-FREEDOM SYSTEMS

l

m

k

k

M

k

k

FIGURE 2.58

W

k

FIGURE 2.57

2.18 A heavy machine weighing 9,810 N is being lowered vertically down by a winch at a uni-

form velocity of 2 m/s. The steel cable supporting the machine has a diameter of 0.01 m. The

winch is suddenly stopped when the steel cable s length is 20 m. Find the period and ampli-

tude of the ensuing vibration of the machine.
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Hammer

k

k

k

Spring

Anvil

k

FIGURE 2.59

2.19 The natural frequency of a spring-mass system is found to be 2 Hz. When an additional mass

of 1 kg is added to the original mass m, the natural frequency is reduced to 1 Hz. Find the

spring constant k and the mass m.

2.20 An electrical switch gear is supported by a crane through a steel cable of length 4 m and

diameter 0.01 m (Fig. 2.61). If the natural time period of axial vibration of the switch gear is

found to be 0.1 s, find the mass of the switch gear.

2.21 Four weightless rigid links and a spring are arranged to support a weight W in two different

ways, as shown in Fig. 2.62. Determine the natural frequencies of vibration of the two

arrangements.

W

l1, E1, I1

l2, E2, I2

FIGURE 2.60
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2.22 A scissors jack is used to lift a load W. The links of the jack are rigid and the collars can slide

freely on the shaft against the springs of stiffnesses and (see Fig. 2.63). Find the natural

frequency of vibration of the weight in the vertical direction.

k2k1

FIGURE 2.61 (Photo courtesy of the

Institution of Electrical Engineers.)

W

k

l

l

l

l

(a)

W
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l

l

l

l

(b)

2u u u

FIGURE 2.62
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W

k1 k2

l

l

l

l
u

Shaft

Collar
Collar

Link

FIGURE 2.63

2.23 A weight is suspended using six rigid links and two springs in two different ways, as shown

in Fig. 2.64. Find the natural frequencies of vibration of the two arrangements.

W

k

k

l

l

l

ll

l

ll

(a)

W

k

l

l

l

ll

l

ll

(b)

k

FIGURE 2.64

2.24 Figure 2.65 shows a small mass m restrained by four linearly elastic springs, each of which

has an unstretched length l, and an angle of orientation of 45 with respect to the x-axis. Deter-

mine the equation of motion for small displacements of the mass in the x direction.

2.25 A mass m is supported by two sets of springs oriented at 30 and 120 with respect to the

X-axis, as shown in Fig. 2.66. A third pair of springs, each with a stiffness of is to be

designed so as to make the system have a constant natural frequency while vibrating in any

direction x. Determine the necessary spring stiffness and the orientation of the springs

with respect to the X-axis.

k3

k3,

°°

°
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2.26 A mass m is attached to a cord that is under a tension T, as shown in Fig. 2.67. Assuming that

T remains unchanged when the mass is displaced normal to the cord, (a) write the differential

equation of motion for small transverse vibrations and (b) find the natural frequency of

vibration.

2.27 A bungee jumper weighing 160 lb ties one end of an elastic rope of length 200 ft and stiffness

10 lb/in. to a bridge and the other end to himself and jumps from the bridge (Fig. 2.68).

Assuming the bridge to be rigid, determine the vibratory motion of the jumper about his sta-

tic equilibrium position.

x

y

m

k1

k1

k2

k2

l

l

45

45

l

l

FIGURE 2.65

X

Y

x

m30

k1

k1

k2

k2

60

u

FIGURE 2.66
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l

m

a b

FIGURE 2.67

2.28 An acrobat weighing 120 lb walks on a tightrope, as shown in Fig. 2.69. If the natural fre-

quency of vibration in the given position, in vertical direction, is 10 rad/sec, find the tension

in the rope.

2.29 The schematic diagram of a centrifugal governor is shown in Fig. 2.70. The length of each

rod is l, the mass of each ball is m, and the free length of the spring is h. If the shaft speed is

determine the equilibrium position and the frequency for small oscillations about this

position.

2.30 In the Hartnell governor shown in Fig. 2.71, the stiffness of the spring is N/m and the

weight of each ball is 25 N. The length of the ball arm is 20 cm, and that of the sleeve arm is

12 cm. The distance between the axis of rotation and the pivot of the bell crank lever is 16 cm.

The spring is compressed by 1 cm when the ball arm is vertical. Find (a) the speed of the

governor at which the ball arm remains vertical and (b) the natural frequency of vibration for

small displacements about the vertical position of the ball arms.

104

v,

Unstretched length, 200 ft

FIGURE 2.68
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2.31 A square platform PQRS and a car that it is supporting have a combined mass of M. The plat-

form is suspended by four elastic wires from a fixed point O, as indicated in Fig. 2.72. The

vertical distance between the point of suspension O and the horizontal equilibrium position

of the platform is h. If the side of the platform is a and the stiffness of each wire is k, deter-

mine the period of vertical vibration of the platform.

2.32 The inclined manometer, shown in Fig. 2.73, is used to measure pressure. If the total length

of mercury in the tube is L, find an expression for the natural frequency of oscillation of the

mercury.

80 in. 160 in.

FIGURE 2.69

m m

l

l

l

l

h k

Rod

uu

v

FIGURE 2.70
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Spring

Ball

O

20 cm

12 cm

16 cm

FIGURE 2.71 Hartnell governor.

2.33 The crate, of mass 250 kg, hanging from a helicopter (shown in Fig. 2.74(a)) can be modeled

as shown in Fig. 2.74(b). The rotor blades of the helicopter rotate at 300 rpm. Find the diam-

eter of the steel cables so that the natural frequency of vibration of the crate is at least twice

the frequency of the rotor blades.

P Q

S
Ra

a

O

FIGURE 2.72
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2.34 A pressure-vessel head is supported by a set of steel cables of length 2 m as shown in Fig.

2.75. The time period of axial vibration (in vertical direction) is found to vary from 5 s to

4.0825 s when an additional mass of 5,000 kg is added to the pressure-vessel head. Deter-

mine the equivalent cross-sectional area of the cables and the mass of the pressure-vessel

head.

2.35 A flywheel is mounted on a vertical shaft, as shown in Fig. 2.76. The shaft has a diameter d

and length l and is fixed at both ends. The flywheel has a weight of W and a radius of gyra-

tion of r. Find the natural frequency of the longitudinal, the transverse, and the torsional

vibration of the system.

L

u

FIGURE 2.73

1 m
1 m

2 m

1 m

(a) (b)

FIGURE 2.74
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FIGURE 2.75 (Photo courtesy of CBI Industries Inc.)

Flywheel

Shaft

a

b * l + a

d

l

FIGURE 2.76
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2.36 A TV antenna tower is braced by four cables, as shown in Fig. 2.77. Each cable is under ten-

sion and is made of steel with a cross-sectional area of The antenna tower can be

modeled as a steel beam of square section of side 1 in. for estimating its mass and stiffness.

Find the tower s natural frequency of bending vibration about the y-axis.

0.5 in.2.

z

2 ft

2 ft

Antenna

tower

50 ft

Cables

100 ft

x

15 ft

15 ft
15 ft

15 ft

y

FIGURE 2.77

2.37 Figure 2.78(a) shows a steel traffic sign, of thickness , fixed to a steel post. The post is

72 in. high with a cross section and it can undergo torsional vibration (about

the z-axis) or bending vibration (either in the zx-plane or the yz-plane). Determine the mode

of vibration of the post in a storm during which the wind velocity has a frequency component

of 1.25 Hz.

Hints:

1. Neglect the weight of the post in finding the natural frequencies of vibration.

2. Torsional stiffness of a shaft with a rectangular section (see Fig. 2.78(b)) is given by

where G is the shear modulus.

kt = 5.33 

ab3G

l
 B1 - 0.63 

b

a
 ¢1 -

b4

12a4
R

2 in. * 1/4 in.,

1

8  in.
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FIGURE 2.79

(b)

2a
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FIGURE 2.78

3. Mass moment of inertia of a rectangular block about axis OO (see Fig. 2.78(c)) is given by

where is the density of the block.

2.38 A building frame is modeled by four identical steel columns, each of weight w, and a rigid

floor of weight W, as shown in Fig. 2.79. The columns are fixed at the ground and have a

bending rigidity of EI each. Determine the natural frequency of horizontal vibration of the

building frame by assuming the connection between the floor and the columns to be (a) piv-

oted as shown in Fig. 2.79(a) and (b) fixed against rotation as shown in Fig. 2.79(b). Include

the effect of self weights of the columns.

r

IOO =

rl

3
 (b3h + h3b)
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A

A

B

B

C

C

l1 l2 l3

d1 d2 d3

D1 D2 D3

E3E2E1

Section AA Section BB Section CC

FIGURE 2.80

2.39 A pick-and-place robot arm, shown in Fig. 2.80, carries an object weighing 10 lb. Find the

natural frequency of the robot arm in the axial direction for the following data: 

psi; 

d2 = 1.25 in., d3 = 0.75 in.d1 = 1.75 in.,

D3 = 1 in.;D2 = 1.5 in.,D1 = 2 in.,E1 = E2 = E3 = 107l3 = 8 in.;l2 = 10 in.,

l1 = 12 in.,

*The asterisk denotes a design problem or a problem with no unique answer.

l

2
l

2

m

l

4
3l
4

m

(a) (b)

FIGURE 2.81

2.41* Figure 2.82 shows a metal block supported on two identical cylindrical rollers rotating in

opposite directions at the same angular speed. When the center of gravity of the block is ini-

tially displaced by a distance x, the block will be set into simple harmonic motion. If the fre-

quency of motion of the block is found to be determine the coefficient of friction between

the block and the rollers.

2.42* If two identical springs of stiffness k each are attached to the metal block of Problem 2.41 as

shown in Fig. 2.83, determine the coefficient of friction between the block and the rollers.

v,

2.40 A helical spring of stiffness k is cut into two halves and a mass m is connected to the two

halves as shown in Fig. 2.81(a). The natural time period of this system is found to be 0.5 s. If

an identical spring is cut so that one part is one-fourth and the other part three-fourths of the

original length, and the mass m is connected to the two parts as shown in Fig. 2.81(b), what

would be the natural period of the system?
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G

x

c c

FIGURE 2.82

2.43 An electromagnet weighing 3,000 lb is at rest while holding an automobile of weight 2,000

lb in a junkyard. The electric current is turned off, and the automobile is dropped. Assuming

that the crane and the supporting cable have an equivalent spring constant of 10,000 lb/in.,

find the following: (a) the natural frequency of vibration of the electromagnet, (b) the result-

ing motion of the electromagnet, and (c) the maximum tension developed in the cable during

the motion.

2.44 Derive the equation of motion of the system shown in Fig. 2.84, using the following meth-

ods: (a) Newton s second law of motion, (b) D Alembert s principle, (c) principle of virtual

work, and (d) principle of conservation of energy.

m

k1 k2

FIGURE 2.84
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2.45 2.46 Draw the free-body diagram and derive the equation of motion using Newton s second law of

motion for each of the systems shown in Figs. 2.85 and 2.86.

m

k

r

4r

O

x(t)

Pulley, mass
moment of
inertia Jo

FIGURE 2.85

r

2r

x(t)

k

5k

2k

m

FIGURE 2.86

2.47 2.48 Derive the equation of motion using the principle of conservation of energy for each of the

systems shown in Figs. 2.85 and 2.86.

2.49 A steel beam of length 1 m carries a mass of 50 kg at its free end, as shown in Fig. 2.87. Find

the natural frequency of transverse vibration of the mass by modeling it as a single-degree-

of-freedom system.
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Cross section, 5 cm * 5 cm

Mass, 50 kg

0.8 m 0.2 m

FIGURE 2.87

2.50 A steel beam of length 1 m carries a mass of 50 kg at its free end, as shown in Fig. 2.88. Find

the natural frequency of transverse vibration of the system by modeling it as a single-degree-

of-freedom system.

Cross section, 5 cm * 5 cm

Mass, 50 kg

0.8 m 0.2 m

FIGURE 2.88

2.51 Determine the displacement, velocity, and acceleration of the mass of a spring-mass system

with and 

2.52 Determine the displacement (x), velocity and acceleration of a spring-mass system

with rad/s for the initial conditions and Plot 

and from to 5 s.

2.53 The free-vibration response of a spring-mass system is observed to have a frequency of 2

rad/s, an amplitude of 10 mm, and a phase shift of 1 rad from Determine the initial

conditions that caused the free vibration. Assume the damping ratio of the system as 0.1.

2.54 An automobile is found to have a natural frequency of 20 rad/s without passengers and 17.32

rad/s with passengers of mass 500 kg. Find the mass and stiffness of the automobile by treat-

ing it as a single-degree-of-freedom system.

2.55 A spring-mass system with mass 2 kg and stiffness 3,200 N/m has an initial displacement of

What is the maximum initial velocity that can be given to the mass without the

amplitude of free vibration exceeding a value of 0.1 m?

2.56 A helical spring, made of music wire of diameter d, has a mean coil diameter (D) of 0.5625

in. and N active coils (turns). It is found to have a frequency of vibration (f) of 193 Hz and a

spring rate k of 26.4 lb/in. Determine the wire diameter d and the number of coils N, assum-

ing the shear modulus G is psi and weight density is The spring

rate (k) and frequency (f) are given by

where W is the weight of the helical spring and g is the acceleration due to gravity.

k =
d4G

8D3N
,   f =

1

2A
kg

W

0.282 lb/in.3.r11.5 * 106

x0 = 0.

t = 0.

t = 0x
$
(t)

x(t), x 
#
(t),x 

#

0 = 1 m/s.x0 = 0.05 mvn = 10
(x
$
)(x 

#
),

x 
#

0 = 5 m/s.k = 500 N/m, m = 2 kg, x0 = 0.1 m,
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2.57 Solve Problem 2.56 if the material of the helical spring is changed from music wire to alu-

minum with and 

2.58 A steel cantilever beam is used to carry a machine at its free end. To save weight, it is pro-

posed to replace the steel beam by an aluminum beam of identical dimensions. Find the

expected change in the natural frequency of the beam-machine system.

2.59 An oil drum of diameter 1 m and a mass of 500 kg floats in a bath of salt water of density

Considering small displacements of the drum in the vertical direction (x),

determine the natural frequency of vibration of the system.

2.60 The equation of motion of a spring-mass system is given by (units: SI system)

a. Determine the static equilibrium position of the system.

b. Derive the linearized equation of motion for small displacements (x) about the static equi-

librium position.

c. Find the natural frequency of vibration of the system for small displacements.

d. Find the natural frequency of vibration of the system for small displacements when the

mass is 600 (instead of 500).

2.61 A deceleration of is caused when brakes are applied to a vehicle traveling at a speed

of 100 km/hour. Determine the time taken and the distance traveled before the vehicle comes

to a complete stop.

2.62 A steel hollow cylindrical post is welded to a steel rectangular traffic sign as shown in Fig.

2.89 with the following data:

Dimensions: 

material properties: 

Find the natural frequencies of the system in transverse vibration in the yz- and xz-planes by

considering the masses of both the post and the sign.

Hint: Consider the post as a cantilever beam in transverse vibration in the appropriate plane.

2.63 Solve Problem 2.62 by changing the material from steel to bronze for both the post and the

sign. Material properties of bronze: 

Section 2.3 Free Vibration of an Undamped Torsional System

2.64 A simple pendulum is set into oscillation from its rest position by giving it an angular veloc-

ity of 1 rad/s. It is found to oscillate with an amplitude of 0.5 rad. Find the natural frequency

and length of the pendulum.

G = 41.4 GPa.
r (specific weight) = 80.1 kN/m3, E = 111.0 GPa,

r (specific weight) = 76.50 kN/m3, E = 207 GPa, G = 79.3 GPa

l = 2 m, r0 = 0.050 m, ri = 0.045 m, b = 0.75 m, d = 0.40 m, t = 0.005 m;

10 m/s2

500x
$
+ 1000a x

0.025
b 3

= 0

rw = 1050 kg/m3.

r = 0.1 lb/in.3.G = 4 * 106 psi
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t

Traffic
sign

Hollow cylindrical
post

A
A

z

y
ri

r0

x
Section A-A

l

b

d

FIGURE 2.89

2.65 A pulley 250 mm in diameter drives a second pulley 1,000 mm in diameter by means of a

belt (see Fig. 2.90). The moment of inertia of the driven pulley is The belt con-

necting these pulleys is represented by two springs, each of stiffness k. For what value of k

will the natural frequency be 6 Hz?

2.66 Derive an expression for the natural frequency of the simple pendulum shown in Fig. 1.10.

Determine the period of oscillation of a simple pendulum having a mass and a

length 

2.67 A mass m is attached at the end of a bar of negligible mass and is made to vibrate in three dif-

ferent configurations, as indicated in Fig. 2.91. Find the configuration corresponding to the

highest natural frequency.

2.68 Figure 2.92 shows a spacecraft with four solar panels. Each panel has the dimensions

with a weight density of and is connected to the body of the

spacecraft by aluminum rods of length 12 in. and diameter 1 in. Assuming that the body of

the spacecraft is very large (rigid), determine the natural frequency of vibration of each panel

about the axis of the connecting aluminum rod.

2.69 One of the blades of an electric fan is removed (as shown by dotted lines in Fig. 2.93). The

steel shaft AB, on which the blades are mounted, is equivalent to a uniform shaft of diameter

1 in. and length 6 in. Each blade can be modeled as a uniform slender rod of weight 2 lb and

length 12 in. Determine the natural frequency of vibration of the remaining three blades

about the y-axis.

0.1 lb/in.35 ft * 3 ft * 1 ft

l = 0.5 m.

m = 5 kg

0.2 kg-m2
.
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m m

m

l

Massless
bar

Massless
bar

a

a

k

k

(a) (b) (c)

u
u

u

FIGURE 2.91

25
0 

m
m

10
00

 m
m

k

k

(b)

(a)

FIGURE 2.90 (Photo courtesy of Reliance Electric

Company.)



PROBLEMS 237

Aluminum rod

FIGURE 2.92

6*

A
B

x

y

z

FIGURE 2.93

2.70 A heavy ring of mass moment of inertia is attached at the end of a two-layered

hollow shaft of length 2 m (Fig. 2.94). If the two layers of the shaft are made of steel and

brass, determine the natural time period of torsional vibration of the heavy ring.

1.0 kg-m2
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5 cm
4 cm

3 cm

2 m

Two-layered
hollow shaft

Brass
Steel

FIGURE 2.94

2.71 Find the natural frequency of the pendulum shown in Fig. 2.95 when the mass of the con-

necting bar is not negligible compared to the mass of the pendulum bob.

Connecting bar
(mass m, length l )

Bob
(mass M)

u

FIGURE 2.95

2.72 A steel shaft of 0.05 m diameter and 2 m length is fixed at one end and carries at the other

end a steel disc of 1 m diameter and 0.1 m thickness, as shown in Fig. 2.14. Find the system s

natural frequency of torsional vibration.

2.73 A uniform slender rod of mass m and length l is hinged at point A and is attached to four lin-

ear springs and one torsional spring, as shown in Fig. 2.96. Find the natural frequency of the

system if and l = 5 m.k = 2000 N/m, kt = 1000 N-m/rad, m = 10 kg,
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m, J0
k1 k2

O

R a

u

FIGURE 2.97

2.74 A cylinder of mass m and mass moment of inertia is free to roll without slipping but is

restrained by two springs of stiffnesses and as shown in Fig. 2.97. Find its natural fre-

quency of vibration. Also find the value of a that maximizes the natural frequency of vibration.

k2,k1

J0

k k

k

kt

k

A

2l

3

l

3

FIGURE 2.96

2.75 If the pendulum of Problem 2.66 is placed in a rocket moving vertically with an acceleration

of what will be its period of oscillation?

2.76 Find the equation of motion of the uniform rigid bar OA of length l and mass m shown in Fig.

2.98. Also find its natural frequency.

5 m/s2,

Torsional
spring

Linear
spring

Linear
spring

k1

k2

kt

O
C.G.

A

a
l
2

l

u

FIGURE 2.98
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2.77 A uniform circular disc is pivoted at point O, as shown in Fig. 2.99. Find the natural frequency

of the system. Also find the maximum frequency of the system by varying the value of b.

b
a

O

FIGURE 2.99

Uniform rigid
bar, mass m

k3k

O

l

4
3l
4

u

FIGURE 2.100

2.78 Derive the equation of motion of the system shown in Fig. 2.100, using the following meth-

ods: (a) Newton s second law of motion, (b) D Alembert s principle, and (c) principle of vir-

tual work.

2.79 Find the natural frequency of the traffic sign system described in Problem 2.62 in torsional

vibration about the z-axis by considering the masses of both the post and the sign.

Hint: The spring stiffness of the post in torsional vibration about the z-axis is given by 

The mass moment of inertia of the sign about the z-axis is given by 

where is the mass of the sign.

2.80 Solve Problem 2.79 by changing the material from steel to bronze for both the post and

the sign. Material properties of bronze: 

2.81 A mass is attached at one end of a uniform bar of mass whose other end is pivoted at

point O as shown in Fig. 2.101. Determine the natural frequency of vibration of the resulting

pendulum for small angular displacements.

m2m 1

G = 41.4 GPa.
r (specific weight) = 80.1 kN/m3, E = 111.0 GPa,

m0I0 =
1

12
 m0 (d2

+ b2),

kt =
pG

2l
 (r0

4
- ri

4).
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m1g

m2g

u
l

FIGURE 2.101

2.82 The angular motion of the forearm of a human hand carrying a mass is shown in Fig.

2.102. During motion, the forearm can be considered to rotate about the joint (pivot point) O

with muscle forces modeled in the form of a force by triceps and a force in biceps

where and are constants and is the velocity with which triceps are stretched

(or contracted). Approximating the forearm as a uniform bar of mass m and length l, derive

the equation of motion of the forearm for small angular displacements Also find the nat-

ural frequency of the forearm.

Section 2.4 Response of First-Order Systems and Time Constant

2.83 Find the free-vibration response and the time constant, where applicable, of systems gov-

erned by the following equations of motion:

a.

b.

c.

d.

Hint: The time constant can also be defined as the value of time at which the step response

of a system rises to 63.2% of its final value.

2.84 A viscous damper, with damping constant c, and a spring, with spring stiffness k, are con-

nected to a massless bar AB as shown in Fig. 2.103. The bar AB is displaced by a distance of

when a constant force is applied. The applied force F is then abruptly

released from its displaced position. If the displacement of the bar AB is reduced from its ini-

tial value of 0.1 m at to 0.01 m at see, find the values of c and k.

2.85 The equation of motion of a rocket, of mass m, traveling vertically under a thrust F and air

resistance or drag D is given by

mn
#
= F - D - mg

t = 10,t = 0

F = 500 Nx = 0.1 m

(100.0% - 36.8%)

500v
#
+ 50v = 0, v(0) = v(t = 0) = 0.5

100n
#
- 20n = 0, n(0) = n(t = 0) = 10

100n
#
+ 20n = 10, n(0) = n(t = 0) = 10

100n
#
+ 20n = 0, n(0) = n(t = 0) = 10

u.

x
#

c2c1(-c2u),
(c1x

#
)

m0
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Biceps
muscle
contracted 
(F2 * +a2u)

a2

m1g

m2g

a1

O (pivot point)

u

F2

F1 Triceps
muscle
contracted 
(F1 * a1x)

.

b

Forearm

FIGURE 2.102 Motion of arm.

A

B
x

c

F * 500 N

k

FIGURE 2.103

If and find the time variation of 

the velocity of the rocket, using the initial conditions and 

where x(t) is the distance traveled by the rocket in time t.

v(0) = 0,x(0) = 0n(t) =

dx(t)

dt
,

g = 9.81 m/s2,m = 1000 kg, F = 50,000 N, D = 2,000 v,
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b
a

h

x

FIGURE 2.105

Uniform beam,
flexural stiffness * El,
total weight * mg.

l

2
l

M

FIGURE 2.104

Section 2.5 Rayleigh s Energy Method

2.86 Determine the effect of self weight on the natural frequency of vibration of the pinned-

pinned beam shown in Fig. 2.104.

2.87 Use Rayleigh s method to solve Problem 2.7.

2.88 Use Rayleigh s method to solve Problem 2.13.

2.89 Find the natural frequency of the system shown in Fig. 2.54.

2.90 Use Rayleigh s method to solve Problem 2.26.

2.91 Use Rayleigh s method to solve Problem 2.73.

2.92 Use Rayleigh s method to solve Problem 2.76.

2.93 A wooden rectangular prism of density height h, and cross section is initially

depressed in an oil tub and made to vibrate freely in the vertical direction (see Fig. 2.105).

a * brw,
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Cylinder rolls
without sliding

Rough surface

k

x

uR

FIGURE 2.106

Use Rayleigh s method to find the natural frequency of vibration of the prism. Assume the

density of oil is If the rectangular prism is replaced by a uniform circular cylinder of

radius r, height h, and density will there be any change in the natural frequency?

2.94 Use the energy method to find the natural frequency of the system shown in Fig. 2.97.

2.95 Use the energy method to find the natural frequency of vibration of the system shown in Fig. 2.85.

2.96 A cylinder of mass m and mass moment of inertia J is connected to a spring of stiffness k and

rolls on a rough surface as shown in Fig. 2.106. If the translational and angular displace-

ments of the cylinder are x and from its equilibrium position, determine the following:

a. Equation of motion of the system for small displacements in terms of x using the energy

method.

b. Equation of motion of the system for small displacements in terms of using the energy

method.

c. Find the natural frequencies of the system using the equation of motion derived in parts

(a) and (b). Are the resulting natural frequencies same?

u

u

rw,

r0.

Section 2.6 Free Vibration with Viscous Damping

2.97 A simple pendulum is found to vibrate at a frequency of 0.5 Hz in a vacuum and 0.45 Hz in

a viscous fluid medium. Find the damping constant, assuming the mass of the bob of the pen-

dulum is 1 kg.

2.98 The ratio of successive amplitudes of a viscously damped single-degree-of-freedom system

is found to be 18:1. Determine the ratio of successive amplitudes if the amount of damping is

(a) doubled, and (b) halved.

2.99 Assuming that the phase angle is zero, show that the response x(t) of an underdamped single-

degree-of-freedom system reaches a maximum value when

and a minimum value when

sin vd 
t = -21 - z2

sin vd 
t = 21 - z2
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Also show that the equations of the curves passing through the maximum and minimum val-

ues of x(t) are given, respectively, by

and

2.100 Derive an expression for the time at which the response of a critically damped system will

attain its maximum value. Also find the expression for the maximum response.

2.101 A shock absorber is to be designed to limit its overshoot to 15 percent of its initial displace-

ment when released. Find the damping ratio required. What will be the overshoot if is

made equal to (a) and (b) 

2.102 The free-vibration responses of an electric motor of weight 500 N mounted on different types

of foundations are shown in Figs. 2.107(a) and (b). Identify the following in each case: (i) the

nature of damping provided by the foundation, (ii) the spring constant and damping coeffi-

cient of the foundation, and (iii) the undamped and damped natural frequencies of the elec-

tric motor.

5

4 z0?
3

4 z0,

zz0

x = -21 - z2Xe-zvn 
t

x = 21 - z2Xe-zvn t

0
0.1

x(t), mm

t, sec
0.2

4

0.3 0.4

(a)

0.5 0.6

8

x(t), mm

t, sec

(b)

0.1 0.2 0.3 0.4
0.5

8

0

6
4

2 1

FIGURE 2.107



246 CHAPTER 2 FREE VIBRATION OF SINGLE-DEGREE-OF-FREEDOM SYSTEMS

c

k/2

v

k/2

FIGURE 2.108

2.103 For a spring-mass-damper system, and Find the following: (a)

critical damping constant (b) damped natural frequency when and (c) logarith-

mic decrement.

2.104 A railroad car of mass 2,000 kg traveling at a velocity is stopped at the end of the

tracks by a spring-damper system, as shown in Fig. 2.108. If the stiffness of the spring is

and the damping constant is determine (a) the maximum

displacement of the car after engaging the springs and damper and (b) the time taken to reach

the maximum displacement.

c = 20 N-s/mm,k = 80 N/mm

v = 10 m/s

c = cc/2,cc,
k = 5,000 N/m.m = 50 kg

2.105 A torsional pendulum has a natural frequency of 200 cycles/min when vibrating in a vacuum.

The mass moment of inertia of the disc is It is then immersed in oil and its natural

frequency is found to be 180 cycles/min. Determine the damping constant. If the disc, when

placed in oil, is given an initial displacement of 2 , find its displacement at the end of the first

cycle.

2.106 A boy riding a bicycle can be modeled as a spring-mass-damper system with an equiva-

lent weight, stiffness, and damping constant of 800 N, 50,000 N/m, and 1,000 N-s/m,

respectively. The differential setting of the concrete blocks on the road caused the level

surface to decrease suddenly, as indicated in Fig. 2.109. If the speed of the bicycle is 5

m/s (18 km/hr), determine the displacement of the boy in the vertical direction. Assume

that the bicycle is free of vertical vibration before encountering the step change in the

vertical displacement.

2.107 A wooden rectangular prism of weight 20 lb, height 3 ft, and cross section floats

and remains vertical in a tub of oil. The frictional resistance of the oil can be assumed to be

equivalent to a viscous damping coefficient When the prism is depressed by a distance of

6 in. from its equilibrium and released, it is found to reach a depth of 5.5 in. at the end of its

first cycle of oscillation. Determine the value of the damping coefficient of the oil.

z.

1 ft * 2 ft

°

0.2 kg-m2.
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FIGURE 2.109

2.108 A body vibrating with viscous damping makes five complete oscillations per second, and in

50 cycles its amplitude diminishes to 10 percent. Determine the logarithmic decrement and

the damping ratio. In what proportion will the period of vibration be decreased if damping is

removed?

2.109 The maximum permissible recoil distance of a gun is specified as 0.5 m. If the initial recoil

velocity is to be between 8 m/s and 10 m/s, find the mass of the gun and the spring stiffness

of the recoil mechanism. Assume that a critically damped dashpot is used in the recoil mech-

anism and the mass of the gun has to be at least 500 kg.

2.110 A viscously damped system has a stiffness of 5,000 N/m, critical damping constant of 0.2 N-

s/mm, and a logarithmic decrement of 2.0. If the system is given an initial velocity of 1 m/s,

determine the maximum displacement of the system.

2.111 Explain why an overdamped system never passes through the static equilibrium position

when it is given (a) an initial displacement only and (b) an initial velocity only.

2.112 2.114 Derive the equation of motion and find the natural frequency of vibration of each of the sys-

tems shown in Figs. 2.110 to 2.112.

2.115 2.117 Using the principle of virtual work, derive the equation of motion for each of the systems

shown in Figs. 2.110 to 2.112.

ck R

Cylinder, mass m

Pure rolling

x(t)

FIGURE 2.110
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c3k k
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FIGURE 2.112

2.118 A wooden rectangular prism of cross section height 120 cm, and mass 40

kg floats in a fluid as shown in Fig. 2.105. When disturbed, it is observed to vibrate freely

with a natural period of 0.5 s. Determine the density of the fluid.

2.119 The system shown in Fig. 2.113 has a natural frequency of 5 Hz for the following data:

When the system is disturbed by giv-

ing it an initial displacement, the amplitude of free vibration is reduced by 80 percent in 10

cycles. Determine the values of k and c.

m = 10 kg, J0 = 5 kg-m2, r1 = 10 cm, r2 = 25 cm.

40 cm * 60 cm,

r1

O

Pulley,
mass moment of inertia J0

r2

c

m

x(t)

k

FIGURE 2.113

k

k

c

R Cylinder, mass m

No slip

30

x(t)

FIGURE 2.111
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2.120 The rotor of a dial indicator is connected to a torsional spring and a torsional viscous damper

to form a single-degree-of-freedom torsional system. The scale is graduated in equal divi-

sions, and the equilibrium position of the rotor corresponds to zero on the scale. When a

torque of N-m is applied, the angular displacement of the rotor is found to be 50

with the pointer showing 80 divisions on the scale. When the rotor is released from this posi-

tion, the pointer swings first to divisions in one second and then to 5 divisions in

another second. Find (a) the mass moment of inertia of the rotor, (b) the undamped natural

time period of the rotor, (c) the torsional damping constant, and (d) the torsional spring

stiffness.

2.121 Determine the values of and for the following viscously damped systems:

a.

b.

c.

2.122 Determine the free-vibration response of the viscously damped systems described in Prob-

lem 2.121 when and 

2.123 Find the energy dissipated during a cycle of simple harmonic motion given by

by a viscously damped single-degree-of-freedom system with the fol-

lowing parameters:

a.

b.

2.124 The equation of motion of a spring-mass-damper system, with a hardening-type spring, is

given by (in SI units)

a. Determine the static equilibrium position of the system.

b. Derive the linearized equation of motion for small displacements (x) about the static equi-

librium position.

c. Find the natural frequency of vibration of the system for small displacements.

2.125 The equation of motion of a spring-mass-damper system, with a softening-type spring, is

given by (in SI units)

a. Determine the static equilibrium position of the system.

b. Derive the linearized equation of motion for small displacements (x) about the static equi-

librium position.

c. Find the natural frequency of vibration of the system for small displacements.

2.126 The needle indicator of an electronic instrument is connected to a torsional viscous

damper and a torsional spring. If the rotary inertia of the needle indicator about its pivot

point is and the spring constant of the torsional spring is 100 N-m/rad, deter-

mine the damping constant of the torsional damper if the instrument is to be critically

damped.

25 kg-m2

100x
$
+ 500x

#
+ 10 000x - 400x3

= 0

100x
$
+ 500x

#
+ 10 000x + 400x3

= 0

m = 10 kg, c = 150 N-s/m, k = 1000 N/m

m = 10 kg, c = 50 N-s/m, k = 1000 N/m

x(t) = 0.2 sin vdt m

x 
#

0 = 10 m/s.x0 = 0.1 m

m = 10 kg, c = 250 N-s/m, k = 1000 N/m

m = 10 kg, c = 200 N-s/m, k = 1000 N/m

m = 10 kg, c = 150 N-s/m, k = 1000 N/m

vdz

-20

°2 * 10-3
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Bearing Bearing
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Torsional
spring (kt)

FIGURE 2.114

2.127 Find the responses of systems governed by the following equations of motion for the initial

conditions 

a.

b.

c.

2.128 Find the responses of systems governed by the following equations of motion for the initial

conditions 

a.

b.

c.

2.129 Find the responses of systems governed by the following equations of motion for the initial

conditions 

a.

b.

c.

2.130 A spring-mass system is found to vibrate with a frequency of 120 cycles per minute in air

and 100 cycles per minute in a liquid. Find the spring constant k, the damping constant c, and

the damping ratio when vibrating in the liquid. Assume m = 10 kg.

2.131 Find the frequency of oscillation and time constant for the systems governed by the follow-

ing equations:

a.

b.

c.

2.132 The mass moment of inertia of a nonhomogeneous and/or complex-shaped body of revolu-

tion about the axis of rotation can be determined by first finding its natural frequency of tor-

sional vibration about its axis of rotation. In the torsional system shown in Fig. 2.114, the

body of revolution (or rotor), of rotary inertia J, is supported on two frictionless bearings and

x
$

+ 6x
#
+ 9x = 0

x
$

+ 8x
#
+ 9x = 0

x
$

+ 2x
#
+ 9x = 0

z

2x
$

+ 8x
#
+ 8x = 0

3x
$

+ 12x
#
+ 9x = 0

2x
$

+ 8x
#
+ 16x = 0

x(0) = 1, x
#
(0) = -1:

2x
$

+ 8x
#
+ 8x = 0

3x
$

+ 12x
#
+ 9x = 0

2x
$

+ 8x
#
+ 16x = 0

x(0) = 1, x
#
(0) = 0:

2x
$

+ 8x
#
+ 8x = 0

3x
$

+ 12x
#
+ 9x = 0

2x
$

+ 8x
#
+ 16x = 0

x(0) = 0, x
#
(0) = 1:
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connected to a torsional spring of stiffness By giving an initial twist (angular displace-

ment) of and releasing the rotor, the period of the resulting vibration is measured as 

a. Find an expression for the mass moment of inertia of the rotor (J) in terms of and 

b. Determine the value of J if and 

Section 2.7 Graphical Representation of Characteristic Roots 

and Corresponding Solutions

2.133 The characteristic roots of a single-degree-of-freedom system are given below. Find all the

applicable features of the system among the characteristic equation, time constant,

undamped natural frequency, damped frequency, and damping ratio.

a.

b.

c.

d.

2.134 Show the characteristic roots indicated in Problem 2.133 (a) (d) in the s-plane and describe

the nature of the response of the system in each case.

2.135 The characteristic equation of a single-degree-of-freedom system, given by Eq. (2.107), can

be rewritten as

(E.1)

where and can be considered as the parameters of the system. Identify

regions that represent a stable, unstable, and  marginally stable system in the parameter

plane i.e., the plane in which a and b are denoted along the vertical and horizontal axes,

respectively.

Section 2.8 Parameter Variations and Root Locus Representations

2.136 Consider the characteristic equation: Draw the root locus of the system

for 

2.137 Consider the characteristic equation: Draw the root locus of the system

for 

2.138 Consider the characteristic equation: Draw the root locus of the sys-

tem for 

Section 2.9 Free Vibration with Coulomb Damping

2.139 A single-degree-of-freedom system consists of a mass of 20 kg and a spring of stiffness 4,000

N/m. The amplitudes of successive cycles are found to be Determine

the nature and magnitude of the damping force and the frequency of the damped vibration.

50, 45, 40, 35, Á mm.

m Ú 0.

ms2
+ 12s + 4 = 0.

k Ú 0.

2s2
+ 12s + k = 0.

c Ú 0.

2s2
+ cs + 18 = 0.

b = k /ma = c/m

s2
+ as + b = 0

s1, 2 = -4, -4

s1, 2 = -4, -5

s1, 2 = 4 ; 5i

s1, 2 = -4 ; 5i

k t = 5000 N-m/rad.t = 0.5 s

k t.t

t.u0

k t.
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2.140 A mass of 20 kg slides back and forth on a dry surface due to the action of a spring having a

stiffness of 10 N/mm. After four complete cycles, the amplitude has been found to be 100 mm.

What is the average coefficient of friction between the two surfaces if the original amplitude

was 150 mm? How much time has elapsed during the four cycles?

2.141 A 10-kg mass is connected to a spring of stiffness 3,000 N/m and is released after giving an

initial displacement of 100 mm. Assuming that the mass moves on a horizontal surface, as

shown in Fig. 2.42(a), determine the position at which the mass comes to rest. Assume the

coefficient of friction between the mass and the surface to be 0.12.

2.142 A weight of 25 N is suspended from a spring that has a stiffness of 1,000 N/m. The weight

vibrates in the vertical direction under a constant damping force. When the weight is initially

pulled downward a distance of 10 cm from its static equilibrium position and released, it

comes to rest after exactly two complete cycles. Find the magnitude of the damping force.

2.143 A mass of 20 kg is suspended from a spring of stiffness 10,000 N/m. The vertical motion of

the mass is subject to Coulomb friction of magnitude 50 N. If the spring is initially displaced

downward by 5 cm from its static equilibrium position, determine (a) the number of half

cycles elapsed before the mass comes to rest, (b) the time elapsed before the mass comes to

rest, and (c) the final extension of the spring.

2.144 The Charpy impact test is a dynamic test in which a specimen is struck and broken by a pen-

dulum (or hammer) and the energy absorbed in breaking the specimen is measured. The

energy values serve as a useful guide for comparing the impact strengths of different materi-

als. As shown in Fig. 2.115, the pendulum is suspended from a shaft, is released from a par-

ticular position, and is allowed to fall and break the specimen. If the pendulum is made to

oscillate freely (with no specimen), find (a) an expression for the decrease in the angle of

swing for each cycle caused by friction, (b) the solution for if the pendulum is released

from an angle and (c) the number of cycles after which the motion ceases. Assume the

mass of the pendulum is m and the coefficient of friction between the shaft and the bearing of

the pendulum is 

2.145 Find the equivalent viscous-damping constant for Coulomb damping for sinusoidal vibration.

2.146 A single-degree-of-freedom system consists of a mass, a spring, and a damper in which both

dry friction and viscous damping act simultaneously. The free-vibration amplitude is found

to decrease by 1 percent per cycle when the amplitude is 20 mm and by 2 percent per cycle

when the amplitude is 10 mm. Find the value of for the dry-friction component of

the damping.

2.147 A metal block, placed on a rough surface, is attached to a spring and is given an initial dis-

placement of 10 cm from its equilibrium position. It is found that the natural time period of

motion is 1.0 s and that the amplitude reduces by 0.5 cm in each cycle. Find (a) the kinetic

coefficient of friction between the metal block and the surface and (b) the number of cycles

of motion executed by the block before it stops.

2.148 The mass of a spring-mass system with and is made to vibrate on

a rough surface. If the friction force is and the amplitude of the mass is observed

to decrease by 50 mm in 10 cycles, determine the time taken to complete the 10 cycles.

F = 20 N

m = 5 kgk = 10,000 N/m

(mN/k)

m.

u0,
u(t)
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2.149 The mass of a spring-mass system vibrates on a dry surface inclined at 30 to the horizontal

as shown in Fig. 2.116.

a. Derive the equation of motion.

b. Find the response of the system for the following data:

2.150 The mass of a spring-mass system is initially displaced by 10 cm from its unstressed position

by applying a force of 25 N, which is equal to five times the weight of the mass. If the mass

is released from this position, how long will the mass vibrate and at what distance will it stop

from the unstressed position? Assume a coefficient of friction of 0.2.

Section 2.10 Free Vibration with Hysteretic Damping

2.151 The experimentally observed force-deflection curve for a composite structure is shown in

Fig. 2.117. Find the hysteresis damping constant, the logarithmic decrement, and the equiva-

lent viscous-damping ratio corresponding to this curve.

m = 20 kg,   k = 1,000 N/m,   m = 0.1,   x0 = 0.1 m,   x 
#

0 = 5 m/s.

°

d

Location
of
specimen

Striking edge

G
Pendulum

l

Shaft

Bearing of
pendulum

Striking edge

Test
specimen

Anvil
(support for
test specimen)

(b)(a)

u

FIGURE 2.115
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2.152 A panel made of fiber-reinforced composite material is observed to behave as a single-degree-

of-freedom system of mass 1 kg and stiffness 2 N/m. The ratio of successive amplitudes is

found to be 1.1. Determine the value of the hysteresis-damping constant the equivalent

viscous-damping constant and the energy loss per cycle for an amplitude of 10 mm.

2.153 A built-up cantilever beam having a bending stiffness of 200 N/m supports a mass of 2 kg at its

free end. The mass is displaced initially by 30 mm and released. If the amplitude is found to be

20 mm after 100 cycles of motion, estimate the hysteresis-damping constant of the beam.

2.154 A mass of 5 kg is attached to the top of a helical spring, and the system is made to vibrate by

giving to the mass an initial deflection of 25 mm. The amplitude of the mass is found to

b

ceq,

b,

k

x(t)

k

m

30

FIGURE 2.116
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reduce to 10 mm after 100 cycles of vibration. Assuming a spring rate of 200 N/m for the

helical spring, find the value of the hysteretis-damping coefficient (h) of the spring.

Section 2.11 Stability of Systems

2.155 Consider the equation of motion of a simple pendulum:

(E.1)

a. Linearize Eq. (E.1) about an arbitrary angular displacement of the pendulum.

b. Investigate the stability of the pendulum about and using the linearized

equation of motion.

2.156 Figure 2.118 shows a uniform rigid bar of mass m and length l, pivoted at one end (point O)

and carrying a circular disk of mass M and mass moment of inertia J (about its rotational

axis) at the other end (point P). The circular disk is connected to a spring of stiffness k and a

viscous damper of damping constant c as indicated.

a. Derive the equation of motion of the system for small angular displacements of the rigid

bar about the pivot point O and express it in the form:

b. Derive conditions corresponding to the stable, unstable, and marginally stable behavior of

the system.

m0 u
 ...

+ c0u
  * + k0u = 0

u0 = pu0 = 0

u0

u
 ...

+

g

l
 sin u = 0

k
c

L

l

FIGURE 2.118

Section 2.12 Examples Using MATLAB

2.157 Find the free-vibration response of a spring-mass system subject to Coulomb damping using

MATLAB for the following data:

m = 5 kg,   k = 100 N/m,   m = 0.5,   x0 = 0.4 m,   x 
#

0 = 0.
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2.158 Plot the response of a critically damped system (Eq. 2.80) for the following data using MAT-

LAB:

a. 50 mm, 100 mm; 

b. 50 mm/s, 100 mm/s; 

2.159 Plot Eq. (2.81) as well as each of the two terms of Eq. (2.81) as functions of t using MAT-

LAB for the following data:

2.160 2.163 Using the MATLAB Program2.m, plot the free-vibration response of a viscously damped sys-

tem with 

for the following values of the damping constant:

a.

b.

c.

d.

2.164 Find the response of the system described in Problem 2.149 using MATLAB.

c = 400 N-s/m

c = 200 N-s/m

c = 100 N-s/m

c = 0

m = 4 kg, k = 2,500 N/m, x0 = 100 mm, x 
#
0 = -10 m/s, ¢t = 0.01 s, n = 50

vn = 10 rad/s,   z = 2.0,   x0 = 20 mm,   x 
#
0 = 50 mm/s

vn = 10 rad/s.x0 = 0, x 
#
0 = 10 mm/s,

x 
#
0 = 0, vn = 10 rad/s.x0 = 10 mm,

DESIGN PROJECTS

2.165*A water turbine of mass 1,000 kg and mass moment of inertia is mounted on a

steel shaft, as shown in Fig. 2.119. The operational speed of the turbine is 2,400 rpm.

Assuming the ends of the shaft to be fixed, find the values of l, a, and d, such that the natural

frequency of vibration of the turbine in each of the axial, transverse, and circumferential

directions is greater than the operational speed of the turbine.

500 kg-m2

a

d

l

FIGURE 2.119
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Amusement park

Bar (mass m)
Fd

ktO

M

l  45
Entrance

u

FIGURE 2.120

2.166* Design the columns for each of the building frames shown in Figs. 2.79(a) and (b) for min-

imum weight such that the natural frequency of vibration is greater than 50 Hz. The weight

of the floor (W) is 4,000 lb and the length of the columns (l) is 96 in. Assume that the

columns are made of steel and have a tubular cross section with outer diameter d and wall

thickness t.

2.167* One end of a uniform rigid bar of mass m is connected to a wall by a hinge joint O, and the

other end carries a concentrated mass M, as shown in Fig. 2.120. The bar rotates about the

hinge point O against a torsional spring and a torsional damper. It is proposed to use this

mechanism, in conjunction with a mechanical counter, to control entrance to an amusement

park. Find the masses m and M, the stiffness of the torsional spring and the damping

force necessary to satisfy the following specifications: (1) A viscous damper or a

Coulomb damper can be used. (2) The bar has to return to within 5 of closing in less than 2

sec when released from an initial position of u = 75°.
°

(Fd)
(k t),

2.168* The lunar excursion module has been modeled as a mass supported by four symmetrically

located legs, each of which can be approximated as a spring-damper system with negligible

mass (see Fig. 2.121). Design the springs and dampers of the system in order to have the

damped period of vibration between 1 s and 2 s.

70 

Mass, 2000 kg

FIGURE 2.121
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2.169* Consider the telescoping boom and cockpit of the firetruck shown in Fig. 2.12(a). Assume

that the telescoping boom PQRS is supported by a strut QT, as shown in Fig. 2.122. Deter-

mine the cross section of the strut QT so that the natural time period of vibration of the

cockpit with the fireperson is equal to 1 s for the following data. Assume that each segment

of the telescoping boom and the strut is hollow circular in cross section. In addition, assume

that the strut acts as a spring that deforms only in the axial direction.

Data:

Lengths of segments: 

Young s modulus of the telescoping arm and 

Outer diameters of sections: 

Inner diameters of sections: 

Weight of the 

Weight of fireperson = 200 lb

cockpit = 100 lb

PQ = 1.75 in., QR = 1.25 in., RS = 0.75 in.

PQ = 2.0 in., QR = 1.5 in., RS = 1.0 in.

strut = 30 * 106 psi

PQ = 12 ft, QR = 10 ft, RS = 8 ft, TP = 3 ft

45 

3*

S

T

P

Strut

A3, l3

A2, l2

A1, l1

R

Q

FIGURE 2.122



Charles Augustin de Coulomb (1736 1806) was a French military engineer and
physicist. His early work on statics and mechanics was presented in 1779 in his
great memoir The Theory of Simple Machines, which describes the effect of resis-
tance and the so-called Coulomb s law of proportionality  between friction and

normal pressure. In 1784, he obtained the correct solution to the problem of the
small oscillations of a body subjected to torsion. He is well known for his laws of
force for electrostatic and magnetic charges. His name has been given to the unit
of electric charge. (Courtesy of Applied Mechanics Reviews.)
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This chapter deals with the response of single-degree-of-freedom systems subjected to har-

monic excitations. First, it presents the derivation of the equation of motion and its solution

when a single degree of freedom system is subjected to harmonic excitation. Both undamped

and damped systems are considered. The magnification or amplification factor, and the phe-

nomena of resonance and beating are introduced in the context of an undamped spring-mass

system. The total solution of the governing nonhomogeneous second-order differential equa-

tion is presented as a sum of the homogeneous equation (free-vibration solution) and the par-

ticular integral (forced-vibration solution). The known initial conditions of the system are

used to evaluate the constants in the total solution. The important characteristics of the mag-

nification factor and the phase angle for a viscously damped system are presented in detail.

Quality factor, bandwidth, and half-power point are defined and the use of quality factor in

estimating the viscous damping factor in a mechanical system is outlined. The response of

the spring-mass-damper system with the harmonic forcing function in complex form is pre-

sented and the concept of complex frequency response is introduced. The response of a

damped system under the harmonic motion of the base and the ideas of displacement trans-

missibility and force transmissibility are introduced. The applications of this problem include

vibration of airplanes caused by runway roughness during taxiing and landing, vibration of

ground vehicles due to unevenness and potholes in roads, and vibration of buildings caused

by ground motion during earthquakes. The response of a damped system under rotating

unbalance is also presented. The applications of this problem include a variety of rotating

machines with unbalance in the rotors. The forced vibration of a spring-mass system under

Coulomb, hysteresis, and other types of damping is also presented. Self-excitation and

dynamic stability analysis of a single-degree-of-freedom system along with applications are

presented. The general transfer-function approach, the Laplace transform approach, and the

harmonic transfer-function approach for the solution of harmonically excited systems are

outlined. Finally, the solution of different types of harmonically excited undamped and

damped vibration problems using MATLAB is presented.

Learning Objectives

After completing this chapter, you should be able to do the following:

* Find the responses of undamped and viscously damped single-degree-of-freedom

systems subjected to different types of harmonic force, including base excitation and

rotating unbalance.

* Distinguish between transient, steady-state, and total solutions.

* Understand the variations of magnification factor and phase angles with the fre-

quency of excitation and the phenomena of resonance and beats.

* Find the response of systems involving Coulomb, hysteresis, and other types of

damping.

* Identify self-excited problems and investigate their stability aspects.

* Derive transfer functions of systems governed by linear differential equations with

constant coefficients.

* Solve harmonically excited single-degree-of-freedom vibration problems using

Laplace transforms.
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* Derive frequency transfer function from the general transfer function and represent

frequency-response characteristics using Bode diagrams.

* Solve harmonically excited vibration response using MATLAB.

3.1 Introduction
A mechanical or structural system is said to undergo forced vibration whenever external

energy is supplied to the system during vibration. External energy can be supplied through

either an applied force or an imposed displacement excitation. The applied force or dis-

placement excitation may be harmonic, nonharmonic but periodic, nonperiodic, or random

in nature. The response of a system to a harmonic excitation is called harmonic response.

The nonperiodic excitation may have a long or short duration. The response of a dynamic

system to suddenly applied nonperiodic excitations is called transient response.

In this chapter, we shall consider the dynamic response of a single-degree-of-freedom

system under harmonic excitations of the form or 

or where is the amplitude, is the frequency, and

is the phase angle of the harmonic excitation. The value of depends on the value of

F(t) at and is usually taken to be zero. Under a harmonic excitation, the response of

the system will also be harmonic. If the frequency of excitation coincides with the natural

frequency of the system, the response will be very large. This condition, known as resonance,

is to be avoided to prevent failure of the system. The vibration produced by an unbalanced

rotating machine, the oscillations of a tall chimney due to vortex shedding in a steady wind,

and the vertical motion of an automobile on a sinusoidal road surface are examples of har-

monically excited vibration. 

The applications of transfer-function, Laplace transform, and frequency-function

approaches in the solution of harmonically excited systems are also discussed in this chapter.

3.2 Equation of Motion
If a force F(t) acts on a viscously damped spring-mass system as shown in Fig. 3.1, the

equation of motion can be obtained using Newton s second law:

(3.1)

Since this equation is nonhomogeneous, its general solution x(t) is given by the sum of the

homogeneous solution, and the particular solution, The homogeneous solu-

tion, which is the solution of the homogeneous equation

(3.2)

represents the free vibration of the system and was discussed in Chapter 2. As seen in Section

2.6.2, this free vibration dies out with time under each of the three possible conditions of

damping (underdamping, critical damping, and overdamping) and under all possible initial

mx
$

+ cx
#
+ kx = 0

xp(t).xh(t),

mx
$

+ cx
#
+ kx = F(t)

t = 0
ff

vF0F(t) = F0 sin (vt + f),(vt + f)
F(t) = F0 cosF(t) = F0ei(vt+f)
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k
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F(t)

*x

m

(a)

kx

F(t)

*x

m

cx+

(b) Free-body diagram

FIGURE 3.1 A spring-mass-damper system.
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t

FIGURE 3.2 Homogenous, particular, and general solutions

of Eq. (3.1) for an underdamped case.

conditions. Thus the general solution of Eq. (3.1) eventually reduces to the particular solu-

tion which represents the steady-state vibration. The steady-state motion is present

as long as the forcing function is present. The variations of homogeneous, particular, and

general solutions with time for a typical case are shown in Fig. 3.2. It can be seen that

dies out and x(t) becomes after some time ( in Fig. 3.2). The part of the

motion that dies out due to damping (the free-vibration part) is called transient. The rate at

which the transient motion decays depends on the values of the system parameters k, c, and

m. In this chapter, except in Section 3.3, we ignore the transient motion and derive only the

particular solution of Eq. (3.1), which represents the steady-state response, under harmonic

forcing functions.

txp(t)xh(t)

xp(t),
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3.3 Response of an Undamped System Under Harmonic Force
Before studying the response of a damped system, we consider an undamped system sub-

jected to a harmonic force, for the sake of simplicity. If a force acts on

the mass m of an undamped system, the equation of motion, Eq. (3.1), reduces to

(3.3)

The homogeneous solution of this equation is given by

(3.4)

where is the natural frequency of the system. Because the exciting force

F(t) is harmonic, the particular solution is also harmonic and has the same frequency

Thus we assume a solution in the form

(3.5)

where X is an constant that denotes the maximum amplitude of By substituting

Eq. (3.5) into Eq. (3.3) and solving for X, we obtain

(3.6)

where denotes the deflection of the mass under a force and is sometimes

called static deflection because is a constant (static) force. Thus the total solution of

Eq. (3.3) becomes

(3.7)

Using the initial conditions and we find that

(3.8)

and hence

(3.9) + + F0

k - mv2*  cos vt

 x(t) = +x0 -
F0

k - mv2 *  cos vnt + + x 
#

0

vn
*  sin vnt

C1 = x0 -
F0

k - mv2
 , C2 =

x 
#

0

vn

x 
#
(t = 0) = x 

#

0,x(t = 0) = x0

x(t) = C1 cos vnt + C2 sin vnt +
F0

k - mv2
 cos vt

F0

F0dst = F0/k

X =
F0

k - mv2
=

dst

1 - + v
vn

*2

xp(t).

xp(t) = X cos vt

v.
xp(t)

vn = (k/m)1/2

xh(t) = C1 cos vnt + C2 sin vnt

mx
$
+ kx = F0 cos vt

F(t) = F0 cos vt
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r * (v/vn)

X/dst

3

2

1

0

+1

+2

+3

1 2 3 4

FIGURE 3.3 Magnification factor of an undamped system, Eq. (3.10).

The maximum amplitude X in Eq. (3.6) can be expressed as

(3.10)

The quantity represents the ratio of the dynamic to the static amplitude of motion

and is called the magnification factor, amplification factor, or amplitude ratio. The vari-

ation of the amplitude ratio, with the frequency ratio (Eq. 3.10) is

shown in Fig. 3.3. From this figure, the response of the system can be identified to be of

three types.

Case 1. When the denominator in Eq. (3.10) is positive and the response

is given by Eq. (3.5) without change. The harmonic response of the system is said to

be in phase with the external force as shown in Fig. 3.4.

xp(t)
0 6 v/vn 6 1,

r = v/vnX/dst,

X/dst

X

dst

=
1

1 - + v
vn

*2
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F0

O
vt

vt

2p

F(t) * F0 cos vt

X

O
2p

xp(t) * X cos vt

FIGURE 3.4 Harmonic response when

0 6 v/vn 6 1.

Case 2. When the denominator in Eq. (3.10) is negative, and the steady-state

solution can be expressed as

(3.11)

where the amplitude of motion X is redefined to be a positive quantity as

(3.12)

The variations of F(t) and with time are shown in Fig. 3.5. Since and F(t) have

opposite signs, the response is said to be 180° out of phase with the external force. Further,

as Thus the response of the system to a harmonic force of very high

frequency is close to zero.

Case 3. When the amplitude X given by Eq. (3.10) or (3.12) becomes

infinite. This condition, for which the forcing frequency is equal to the natural frequency

of the system is called resonance. To find the response for this condition, we rewrite

Eq. (3.9) as

(3.13)x(t) = x0 cos vnt +
x 
#

0

vn
 sin vnt + dstD cos vt - cos vnt

1 - ¢ v
vn

2
T

vn,
v

v/vn = 1,

v/vn: q , X: 0.

xp(t)xp(t)

X =
dst¢ v

vn

2

- 1

xp(t) = -X cos vt

v/vn 7 1,



266 CHAPTER 3 HARMONICALLY EXCITED VIBRATION

F0

O
vt

vt

2p

2p

F(t) * F0 cos vt

+X

O

xp(t) * +X cos vt

FIGURE 3.5 Harmonic response when

v/vn 7 1.

Since the last term of this equation takes an indefinite form for we apply L Hos-

pital s rule [3.1] to evaluate the limit of this term:

(3.14)

Thus the response of the system at resonance becomes

(3.15)

It can be seen from Eq. (3.15) that at resonance, x(t) increases indefinitely. The last term of

Eq. (3.15) is shown in Fig. 3.6, from which the amplitude of the response can be seen to

increase linearly with time.

x(t) = x0 cos vnt +
x 
#

0

vn
 sin vnt +

dstvnt

2
 sin vnt

 = lim
v:vn

C t sin vt

2 
v

vn
2

S =
vnt

2
 sin vnt

 lim
v:vn

D  cos vt - cos vnt

1 - ¢ v
vn

2
T = lim

v:vn

D d

dv
 (cos vt - cos vnt)

d

dv
¢1 -

v
2

vn
2

T

v = vn,
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t
O

xp(t)

t *
vn

2p

FIGURE 3.6 Response when v/vn = 1.

3.3.1
Total Response

The total response of the system, Eq. (3.7) or Eq. (3.9), can also be expressed as

(3.16)

(3.17)

where A and can be determined as in the case of Eq. (2.21). Thus the complete motion

can be expressed as the sum of two cosine curves of different frequencies. In Eq. (3.16),

the forcing frequency is smaller than the natural frequency, and the total response is

shown in Fig. 3.7(a). In Eq. (3.17), the forcing frequency is greater than the natural fre-

quency, and the total response appears as shown in Fig. 3.7(b).

v

f

 x(t) = A cos (vnt - f) -
dst

-  1 + ¢ v
vn

2
 cos vt;  for 

v

vn
7 1

 x(t) = A cos (vnt - f) +
dst

1 - ¢ v
vn

2
 cos vt;  for 

v

vn
6 1

3.3.2
Beating
Phenomenon

If the forcing frequency is close to, but not exactly equal to, the natural frequency of the

system, a phenomenon known as beating may occur. In this kind of vibration, the ampli-

tude builds up and then diminishes in a regular pattern (see Section 1.10.5). The phenome-

non of beating can be explained by considering the solution given by Eq. (3.9). If the initial

conditions are taken as Eq. (3.9) reduces to

(3.18) =
(F0/m)

vn
2
- v2

 B2 sin 
v + vn

2
 t #  sin 

vn - v

2
 tR

 x(t) =

(F0/m)

vn
2
- v2

 (cos vt - cos vnt)

x0 = x 
#

0 = 0,
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O

x(t)

A

vn

2p

vn

2
1 *

dst

v

v
vn

(a) + 1

O

x(t)

vn

2p

vn

2
* 1

dst

v

vn

v
(b) , 1

2p
v

2p
v

A
t

t

FIGURE 3.7 Total response.

Let the forcing frequency be slightly less than the natural frequency:

(3.19)

where is a small positive quantity. Then and

(3.20)

Multiplication of Eqs. (3.19) and (3.20) gives

(3.21)

The use of Eqs. (3.19) to (3.21) in Eq. (3.18) gives

(3.22)

Since is small, the function varies slowly; its period, equal to is large. Thus

Eq. (3.22) may be seen as representing vibration with period and of variable ampli-

tude equal to

2p/v
2p/e,sin ete

x(t) = +F0/m

2ev
 sin et*sin vt

vn
2
- v

2
= 4ev

v + vn M 2v

vn L ve

vn - v = 2e

v
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It can also be observed that the curve will go through several cycles, while the 

wave goes through a single cycle, as shown in Fig. 3.8. Thus the amplitude builds up and

dies down continuously. The time between the points of zero amplitude or the points of

maximum amplitude is called the period of beating and is given by

(3.23)

with the frequency of beating defined as

vb = 2e = vn - v

tb =
2p

2e
=

2p

vn - v

(tb)

sin etsin vt

+F0/m

2ev
*sin et

E X A M P L E  3 . 1
Plate Supporting a Pump

A reciprocating pump, weighing 150 lb, is mounted at the middle of a steel plate of thickness 0.5 in.,

width 20 in., and length 100 in., clamped along two edges as shown in Fig. 3.9. During operation of

the pump, the plate is subjected to a harmonic force, 62.832t lb. Find the amplitude of

vibration of the plate.

Solution: The plate can be modeled as a fixed-fixed beam having Young s modulus 

psi, length in., and area moment of inertia The bending

stiffness of the beam is given by

(E.1)k =
192EI

l3
=

192(30 * 106)(0.2083)

(100)3
= 1200.0 lb/in.

(I) =
1
12 (20)(0.5)3

= 0.2083 in4.(l) = 100

(E) = 30 * 106

F(t) = 50 cos

O

x(t)

2p
v

2p

F0/m

2*v

F0/m

2*v
sin *t

t

*

FIGURE 3.8 Phenomenon of beats.
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F(t), x(t)

0.5 in.

100 in.

FIGURE 3.9 Plate supporting an unbalanced pump.

The amplitude of harmonic response is given by Eq. (3.6) with 

(neglecting the weight of the steel plate), and Thus Eq. (3.6)

gives

(E.2)

The negative sign indicates that the response x(t) of the plate is out of phase with the excitation F(t).

*

X =
F0

k - mv2
=

50

1200.0 - (150/386.4)(62.832)2
= -0.1504 in.

v = 62.832 rad/s.k = 1200.0 lb/in.,
m = 150/386.4 lb-sec2/in.F0 = 50 lb,

E X A M P L E  3 . 2
Determination of Mass from Known Harmonic Response

A spring-mass system, with a spring stiffness of 5,000 N/m, is subjected to a harmonic force of

magnitude 30 N and frequency 20 Hz. The mass is found to vibrate with an amplitude of 0.2 m.

Assuming that vibration starts from rest determine the mass of the system.

Solution: The vibration response of the system can be found from Eq. (3.9) with 

(E.1)

which can be rewritten as

(E.2)

Since the amplitude of vibration is known to be 0.2 m, Eq. (E.2) gives

(E.3)
2F0

k - mv2
= 0.2

x(t) =
2F0

k - mv2
 sin 

vn + v

2
 t sin 

vn - v

2
 t

x(t) =
F0

k - mv2
 (cos vt - cos vn t)

x0 = x
#

0 = 0:

(x0 = x
#

0 = 0),



3.4 RESPONSE OF A DAMPED SYSTEM UNDER HARMONIC FORCE 271

Using the known values of and Eq. (E.3)

yields

(E.4)

Equation (E.4) can be solved to find 

*

3.4 Response of a Damped System Under Harmonic Force
If the forcing function is given by the equation of motion becomes

(3.24)

The particular solution of Eq. (3.24) is also expected to be harmonic; we assume it in

the form1

(3.25)

where X and are constants to be determined. X and denote the amplitude and phase angle

of the response, respectively. By substituting Eq. (3.25) into Eq. (3.24), we arrive at

(3.26)

Using the trigonometric relations

in Eq. (3.26) and equating the coefficients of and on both sides of the result-

ing equation, we obtain

(3.27)

Solution of Eq. (3.27) gives

(3.28)X =
F0

[(k - mv2)2
+ c2v2]1/2

 X[(k - mv2) sin f - cv cos f] = 0

 X[(k - mv2) cos f + cv sin f] = F0

sin vtcos vt

 sin (vt - f) = sin vt cos f - cos vt sin f

 cos (vt - f) = cos vt cos f +  sin vt sin f

X[(k - mv2) cos (vt - f) - cv sin (vt - f)] = F0 cos vt

ff

xp(t) = X cos (vt - f)

mx 
$
+ cx 

#
+ kx = F0 cos vt

F(t) = F0 cos vt,

m = 0.2976 kg.

2(30)

5000 - m(125.664)2
= 0.2

k = 5,000 N/m,F0 = 30 N, v = 20 Hz = 125.665 rad/s,

1Alternatively, we can assume to be of the form which also involves two

constants and But the final result will be the same in both cases.C2.C1

xp(t) = C1 cos vt + C2 sin vt,xp(t)
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and

(3.29)

By inserting the expressions of X and from Eqs. (3.28) and (3.29) into Eq. (3.25), we

obtain the particular solution of Eq. (3.24). Figure 3.10(a) shows typical plots of the forc-

ing function and (steady-state) response. The various terms of Eq. (3.26) are shown vecto-

rially in Fig. 3.10(b). Dividing both the numerator and denominator of Eq. (3.28) by k and

making the following substitutions

we obtain

(3.30)
X

dst

=
1

b B1 - ¢ v
vn

2R2

+ B2z
v

vn
R2 r 1/2

=
1

2(1 - r2)2
+ (2zr)2

 r =
v

vn
= frequency ratio

 dst =
F0

k
= deflection under the static force F0, and

 z =
c

cc
=

c

2mvn
=

c

22mk
 ;   

c

m
= 2zvn, 

 vn = A
k

m
= undamped natural frequency, 

f

f = tan-1 ¢ cv

k - mv2

(a) Graphical representation

X

kX

Reference

F0

mv2X

cvX

vt
f

(b) Vectorial representation

F(t)

vt

v

xp(t)

vt * f

X
F0

O

2p
2p

vt

xp(t)

F(t)
F(t), xp(t)

f

f

FIGURE 3.10 Representation of forcing function and response.
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and

(3.31)

As stated in Section 3.3, the quantity is called the magnification factor, ampli-

fication factor, or amplitude ratio. The variations of and with the frequency ratio

r and the damping ratio are shown in Fig. 3.11.

The following characteristics of the magnification factor (M) can be noted from

Eq. (3.30) and Fig. 3.11(a):

1. For an undamped system Eq. (3.30) reduces to Eq. (3.10), and as

2. Any amount of damping reduces the magnification factor (M) for all values

of the forcing frequency.

3. For any specified value of r, a higher value of damping reduces the value of M.

4. In the degenerate case of a constant force (when ), the value of 

5. The reduction in M in the presence of damping is very significant at or near resonance.

6. The amplitude of forced vibration becomes smaller with increasing values of the forc-

ing frequency (that is, as ).r:  qM: 0

M = 1.r = 0

(z 7 0)
r: 1.

M: q(z = 0),

z

fX/dst

M = X/dst

f = tan-1d 2z
v

vn

1 - ¢ v
vn

2 t = tan-1 ¢ 2zr

1 - r2

2.8

2.4

2.0

1.6

1.2
1.0
0.8

0.4

0.4 0.8
1.0

1.2 1.6 2.0 2.4 2.8 3.20

Frequency ratio: r *vn

(a)

d
st

A
m

p
li
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d

e
 r

a
ti

o
: 
M

 *
 
X

z * 0.1

z * 0.3
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z * 0.5

z * 1.5
z * 2.0
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Frequency ratio: r *vn
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z * 0.00
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z * 0.25

z * 0.5
z * 1.0
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FIGURE 3.11 Variation of X and with frequency ratio r.f



274 CHAPTER 3 HARMONICALLY EXCITED VIBRATION

7. For the maximum value of M occurs when (see Problem 3.32)

(3.32)

which can be seen to be lower than the undamped natural frequency and the

damped natural frequency 

8. The maximum value of X (when ) is given by

(3.33)

and the value of X at by

(3.34)

Equation (3.33) can be used for the experimental determination of the measure of

damping present in the system. In a vibration test, if the maximum amplitude of the

response is measured, the damping ratio of the system can be found using Eq.

(3.33). Conversely, if the amount of damping is known, one can make an estimate of

the maximum amplitude of vibration.

9. For when For the graph of M monotonically decreases 

with increasing values of r.

The following characteristics of the phase angle can be observed from Eq. (3.31) and

Fig. 3.11(b):

1. For an undamped system Eq. (3.31) shows that the phase angle is 0 for

and 180° for This implies that the excitation and response are in

phase for and out of phase for when 

2. For and the phase angle is given by implying that

the response lags the excitation.

3. For and the phase angle is given by implying that

the response leads the excitation.

4. For and the phase angle is given by implying that the phase

difference between the excitation and the response is 90°.

5. For and large values of r, the phase angle approaches 180°, implying that the

response and the excitation are out of phase.

z 7 0

f = 90°,r = 1,z 7 0

90° 6 f 6 180°,r 7 1,z 7 0

0 6 f 6 90°,0 6 r 6 1,z 7 0
z = 0.r 7 10 6 r 6 1

r 7 1.0 6 r 6 1
(z = 0),

z 7
1
12

 

,r = 0.z =
1
12

, dM
dr = 0

(X)max

+ X

dst

*
v=vn

=
1

2z

v = vn

+ X

dst

*
max

=
1

2z21 - z2

r = 21 - 2z2

vd = vn21 - z2.
vn

r = 21 - 2z2 or v = vn21 - 2z2

0 6 z 6
1
12

,

3.4.1
Total Response

The complete solution is given by where is given by Eq.

(2.70). Thus, for an underdamped system, we have

(3.35)

vd = 21 - z2 vn

x(t) = X0e-zvn t cos(vdt - f0) + Xcos(vt - f)

xh(t)x(t) = xh(t) + xp(t)
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E X A M P L E  3 . 3
Total Response of a System

Find the total response of a single-degree-of-freedom system with 

and under the following conditions:

a. An external force t acts on the system with and 

b. Free vibration with 

Solution:

a. From the given data, we obtain

(E.1)

(E.2)

Using the initial conditions, and Eq. (3.36) yields:

0.01 = X0 cos f0 + (0.03326)(0.997785)

x 
#

0 = 0,x0 = 0.01

f = tan-1 ¢ 2zr

1 - r2
= tan-1 ¢ 2 # 0.05 # 0.5

1 - 0.52
= 3.814075°

X =
dst

2(1 - r2)2
+ (2 z r)2

=
0.025

C(1 - 0.052)2
+ (2 # 0.5 # 0.5)2 D 1/2

= 0.03326 m

r =
v

vn
=

10

20
= 0.5

vd = 21 - z2vn = 21 - (0.05)2(20) = 19.974984 rad/s

z =
c

cc
=

c

22km
=

20

22(4000)(10)
= 0.05

dst =
F0

k
=

100

4000
= 0.025 m

vn = A
k

m
= A

4000

10
= 20 rad/s

F(t) = 0.
v = 10 rad/s.F0 = 100 NF(t) = F0 cos v 

x 
#

0 = 0x0 = 0.01 m,k = 4000 N/m,
c = 20 N-s/m,m = 10 kg,

X and are given by Eqs. (3.30) and (3.31), respectively, and and [different from

those of Eq. (2.70)] can be determined from the initial conditions. For the initial condi-

tions, and Eq. (3.35) yields

(3.36)

The solution of Eq. (3.36) gives and as

(3.37)

X0 = B(x0 - X cos f)2
+

1

vd
2

 (zvnx0 + x
#

0 - zvnX cos f - vX sin f)2R 1
2

tan f0 =
zvnx0 + x

#

0 - zvnX cos f - vX sin f

vd(x0 - X cos f)

 t

f0X0

 x 
#

0 = -  zvnX0 cos f0 + vdX0 sin f0 + vX sin f

 x0 = X0 cos f0 + X cos f

x 
#
(t = 0) = x 

#

0,x(t = 0) = x0

f0X0f



276 CHAPTER 3 HARMONICALLY EXCITED VIBRATION

or

(E.3)

(E.4)

Substituting the value of from Eq. (E.3) into (E.4), we obtain

(E.5)

Solution of Eqs. (E.3) and (E.5) yields

(E.6)

and

or

(E.7)

b. For free vibration, the total response is given by

(E.8)

Using the initial conditions and and of Eq. (E.8) can

be determined as (see Eqs. 2.73 and 2.75):

(E.9)

(E.10)

Note that the constants and in cases (a) and (b) are very different.

*

f0X0

 f0 = tan-1 ¢ -  

x
#
0 + zvnx0

vd x0
= tan-1¢ -  

0.05 # 20

19.974984
= -2.865984°

 X0 = Bx0
2
+ ¢zvnx0

vd

2R 1/2

= B0.012
+ ¢0.05 # 20 # 0.01

19.974984

2R 1/2

= 0.010012

f0x 
#
(0) = x 

#
0 = 0, X0x(0) = x0 = 0.01

x(t) = X0e- 
z vn t cos (vdt - f0)

f0 = 5.586765°

tan f0 =
X0 sin f0

X0 cos f0
= 0.0978176

X0 = C(X0 cos f0)2
+ (X0 sin f0)2 D 1/2

= 0.023297

X0 sin f0 = -  0.002268

X0 cos f0

0  = -  (0.05)(20) X0 cos f0 + X0 (19.974984) sin f0 + (0.03326)(10) sin (3.814075°)

X0 cos f0 = -0.023186

3.4.2
Quality Factor
and Bandwidth

For small values of damping we can take

(3.38)

The value of the amplitude ratio at resonance is also called Q factor or quality factor of the

system, in analogy with some electrical-engineering applications, such as the tuning circuit

of a radio, where the interest lies in an amplitude at resonance that is as large as possible

[3.2]. The points and where the amplification factor falls to are called half-

power points because the power absorbed by the damper (or by the resistor in an

electrical circuit), responding harmonically at a given frequency, is proportional to the

square of the amplitude (see Eq. (2.94)):

(3.39)¢W = pcvX2

(¢W)
Q/12,R2,R1

¢ X

dst max

M ¢ X

dst v=vn

=
1

2z
= Q

(z 6 0.05),
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The difference between the frequencies associated with the half-power points and is

called the bandwidth of the system (see Fig. 3.12). To find the values of and we set

in Eq. (3.30) so that

or

(3.40)

The solution of Eq. (3.40) gives

(3.41)

For small values of Eq. (3.41) can be approximated as

(3.42)

where and From Eq. (3.42),

(3.43)

Using the relation

(3.44)v2 + v1 = 2vn

v2
2
- v1

2
= (v2 + v1)(v2 - v1) = (R2

2
- R1

2)vn
2
M 4zvn

2

v2 = v R2
.v1 = v R1

r1
2
= R1

2
= +v1

vn
*2

M 1 - 2z, r2
2
= R2

2
= +v2

vn
*2

M 1 + 2z

z,

r1
2
= 1 - 2z2 - 2z21 + z2, r2

2
= 1 - 2z2 + 2z21 + z2

r4 - r2(2 - 4z2) + (1 - 8z2) = 0

1

2(1 - r2)2 + (2zr)2
=

Q

22
=

1

222z

X/dst = Q/12
R2,R1

R2R1

vn
v

X/dst

Q

Q * 
1

2z

*2

R1 1.0 R2

Half-power points

Bandwidth

FIGURE 3.12 Harmonic-response curve showing half-

power points and bandwidth.
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in Eq. (3.43), we find that the bandwidth is given by

(3.45)

Combining Eqs. (3.38) and (3.45), we obtain

(3.46)

It can be seen that the quality factor Q can be used for estimating the equivalent viscous

damping in a mechanical system.2

3.5 Response of a Damped System Under 
Let the harmonic forcing function be represented in complex form as so that

the equation of motion becomes

(3.47)

Since the actual excitation is given only by the real part of F(t), the response will also be

given only by the real part of x(t), where x(t) is a complex quantity satisfying the differen-

tial equation (3.47). in Eq. (3.47) is, in general, a complex number. By assuming the

particular solution 

(3.48)

we obtain, by substituting Eq. (3.48) into Eq. (3.47),3

(3.49)

Multiplying the numerator and denominator on the right side of Eq. (3.49) by 

and separating the real and imaginary parts, we obtain

(3.50)

Using the relation where and Eq. (3.50)

can be expressed as

(3.51)X =
F0

[(k - mv2)2
+ c2v2]1/2

 e- 
if

tan f = y/x,A = 2x2
+ y2x + iy = Aeif,

X = F0 B k - mv2

(k - mv2)2
+ c2v2

- i 
cv

(k - mv2)2
+ c2v2R

-  icv]
[(k - mv2)

X =
F0

(k - mv2) + icv

xp(t) = Xeivt

xp(t)
F0

mx 
$
+ cx 

#
+ kx = F0eivt

F(t) = F0eivt

F(t) = F0e
iVt

Q M
1

2z
M

vn

v2 - v1

¢v = v2 - v1 M 2zvn

¢v

2The determination of the system parameters (m, c, and k) based on half-power points and other response charac-
teristics of the system is considered in Section 10.8.
3Equation (3.49) can be written as where is called the mechanical

impedance of the system [3.8].
Z(iv) = -mv2

+ ivc + kZ(iv)X = F0,
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iVt

where

(3.52)

Thus the steady-state solution, Eq. (3.48), becomes

(3.53)xp(t) =
F0

[(k - mv2)2
+ (cv)2]1/2

 ei(v t -  f)

f = tan-1 ¢ cv

k - mv2

Frequency Response. Equation (3.49) can be rewritten in the form

(3.54)

where is known as the complex frequency response of the system. The absolute

value of given by

(3.55)

denotes the magnification factor defined in Eq. (3.30). Recalling that 

we can show that Eqs. (3.54) and (3.55) are related:

(3.56)

where is given by Eq. (3.52), which can also be expressed as

(3.57)

Thus Eq. (3.53) can be expressed as

(3.58)

It can be seen that the complex frequency-response function, contains both the

magnitude and phase of the steady-state response. The use of this function in the experi-

mental determination of the system parameters (m, c, and k) is discussed in Section 10.8.

If the corresponding steady-state solution is given by the real part of

Eq. (3.53):

(3.59) = ReBF0

k
 H(iv)eivtR = ReBF0

k
 H(iv) ei(v t -  f)R

 xp(t) =
F0

C (k - mv2)2
+ (cv)2 D 1/2

 cos(vt - f)

F(t) = F0 cos vt,

H(iv),

xp(t) =
F0

k
 H(iv) ei(vt -  f)

f = tan-1 ¢ 2zr

1 - r2

f

H(iv) = H(iv) e- 
if

i sin f,
eif

= cos f +

H(iv) = ` kX

F0
` = 1

[(1 - r2)2
+ (2zr)2]1/2

H(iv)
H(iv)

kX

F0
=

1

1 - r2
+ i2zr

K H(iv)
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which can be seen to be the same as Eq. (3.25). Similarly, if the corre-

sponding steady-state solution is given by the imaginary part of Eq. (3.53):

(3.60)

Complex Vector Representation of Harmonic Motion. The harmonic excitation and

the response of the damped system to that excitation can be represented graphically in the

complex plane, and an interesting interpretation can be given to the resulting diagram. We

first differentiate Eq. (3.58) with respect to time and obtain

(3.61)

Because i can be expressed as

(3.62)

we can conclude that the velocity leads the displacement by the phase angle and that

it is multiplied by Similarly, can be written as

(3.63)

Hence the acceleration leads the displacement by the phase angle and it is multiplied

by 

Thus the various terms of the equation of motion (3.47) can be represented in the

complex plane, as shown in Fig. 3.13. The interpretation of this figure is that the sum of

the complex vectors and kx(t) balances F(t), which is precisely what is

required to satisfy Eq. (3.47). It is to also be noted that the entire diagram rotates with

angular velocity in the complex plane. If only the real part of the response is to be con-

sidered, then the entire diagram must be projected onto the real axis. Similarly, if only

the imaginary part of the response is to be considered, then the diagram must be pro-

jected onto the imaginary axis. In Fig. 3.13, notice that the force is repre-

sented as a vector located at an angle to the real axis. This implies that is real. If 

is also complex, then the force vector F(t) will be located at an angle of where

is some phase angle introduced by In such a case, all the other vectors namely,

and kx will be shifted by the same angle This is equivalent to multiplying

both sides of Eq. (3.47) by eic.
c.mx

$
, cx

#
,

F0.c

(v + c),
F0F0vt

F(t) = F0eivt

v

mx
$
(t), cx

#
(t),

v2.
p,

-1 = cos p + i sin p = eip

-1v.
p/2

i = cos  

p

2
+ i sin 

p

2
= ei 

p
2

 Acceleration = x
$

p(t) = (iv)2
 

F0

k
 H(iv) ei(vt -  f)

= -
 v2xp(t)

 Velocity = x
#

p(t) = iv 

F0

k
 H(iv) ei(vt -

 
f)

= ivxp(t)

 = ImBF0

k
 H(iv) ei(vt -  f)R

 xp(t) =
F0

C(k - mv2)2
+ (cv)2 D 1/2 sin(vt - f)

F(t) = F0 sin vt,
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Im

F(t)

vt

v

(m
x * kx)
..

cx(t)
.

kx(t)

x(t)

Re

mx(t)
..

f

FIGURE 3.13 Representation of Eq. (3.47) in a complex

plane.

3.6 Response of a Damped System Under the Harmonic Motion of the Base
Sometimes the base or support of a spring-mass-damper system undergoes harmonic motion,

as shown in Fig. 3.14(a). Let y(t) denote the displacement of the base and x(t) the displace-

ment of the mass from its static equilibrium position at time t. Then the net elongation of the

spring is and the relative velocity between the two ends of the damper is From

the free-body diagram shown in Fig. 3.14(b), we obtain the equation of motion:

(3.64)mx
$
+ c(x

#
- y

#
) + k(x - y) = 0

x
#
- y

#
.x - y

m

k c

Base

*x

*y

m

*x

y(t) + Y sin vt

t

k(x , y) c(x , y)
. .

*x
..

(b)(a)

FIGURE 3.14 Base excitation.
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If Eq. (3.64) becomes

(3.65)

where and This shows that giving excitation to

the base is equivalent to applying a harmonic force of magnitude A to the mass. By using

the solution indicated by Eq. (3.60), the steady-state response of the mass, can be

expressed as

(3.66)

where

Using trigonometric identities, Eq. (3.66) can be rewritten in a more convenient form as

(3.67)

where X and are given by

(3.68)

and

(3.69)

The ratio of the amplitude of the response to that of the base motion y(t), is called 

the displacement transmissibility.4 The variations of and given by Eqs. (3.68)

and (3.69) are shown in Figs. 3.15(a) and (b), respectively, for different values of r and 

Note that if the harmonic excitation of the base is expressed in complex form as

the response of the system can be expressed, using the analysis of

Section 3.5, as

(3.70)

and the displacement transmissibility as

(3.71)

where is given by Eq. (3.55).H(iv)

X

Y
= Td = C1 + (2zr)2 D 1/2 H(iv)

xp(t) = Reb ¢ 1 + i2zr

1 - r2
+ i2zr

Ye ivt r
y(t) = Re(Yeivt),

z.
f

X
Y K Td

X
Y,xp(t)

f = tan-1 B mcv3

k(k - mv2) + (vc)2R = tan-1 B 2zr3

1 + (4z2
- 1)r2R

X

Y
= B k2

+ (cv)2

(k - mv2)2
+ (cv)2 R

1/2

= B 1 + (2zr)2

(1 - r2)2
+ (2zr)2R

1/2

f

xp(t) = X sin(vt - f)

f1 = tan-1¢ cv

k - mv2

xp(t) =

Y2k2
+ (cv)2

C(k - mv2)2
+ (cv)2 D 1/2

 sin(vt - f1 - a)

xp(t),

a = tan-1 C -  
cv
k D .A = Y2k2

+ (cv)2

 = A sin(vt - a)

 mx
$
+ cx

#
+ kx = ky + cy

#
= kY sin vt + cvY cos vt

y(t) = Y sin vt,

4The expression for the displacement transmissibility can also be derived using the transfer-function approach
described in Section 3.14.
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The following aspects of displacement transmissibility, can be noted from

Fig. 3.15(a):

1. The value of is unity at and close to unity for small values of r.

2. For an undamped system at resonance 

3. The value of is less than unity for values of (for any amount of

damping ).

4. The value of for all values of at 

5. For smaller damping ratios lead to larger values of On the other hand,

for smaller values of damping ratio lead to smaller values of 

6. The displacement transmissibility, attains a maximum for at the fre-

quency ratio given by (see Problem 3.60):

rm =
1

2z
 B21 + 8z2

- 1R 1/2

r = rm 6 1
0 6 z 6 1Td,

Td.r 7 12,
Td.r 6 12,

r = 12.zTd is unity

z

r 7 12(Td 6 1)Td

(r = 1).(z = 0), Td:  q 

r = 0Td
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FIGURE 3.15 Variations of and with r.fTd

3.6.1

Force

Transmitted

In Fig. 3.14, a force, F, is transmitted to the base or support due to the reactions from the

spring and the dashpot. This force can be determined as

(3.72)

From Eq. (3.67), Eq. (3.72) can be written as

(3.73)

where is the amplitude or maximum value of the force transmitted to the base given by

(3.74)
FT

kY
= r2B 1 + (2zr)2

(1 - r2)2
+ (2zr)2 R

1/2

FT

F = mv2X sin (vt - f) = FT sin(vt - f)

F = k(x - y) + c(x
#
- y

#
) = -mx

$
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The ratio is known as the force transmissibility.5 Note that the transmitted force is

in phase with the motion of the mass x(t). The variation of the force transmitted to the base

with the frequency ratio r is shown in Fig. 3.16 for different values of z.

(FT/kY)
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FIGURE 3.16 Force transmissibility.

3.6.2

Relative Motion

If denotes the motion of the mass relative to the base, the equation of motion,

Eq. (3.64), can be rewritten as

(3.75)

The steady-state solution of Eq. (3.75) is given by

(3.76)

where Z, the amplitude of z(t), can be expressed as

(3.77)Z =
mv2Y

2(k - mv2)2
+ (cv)2

= Y
r2

2(1 - r2)2
+ (2zr)2

z(t) =

mv2Y sin(vt - f1)

[(k - mv2)2
+ (cv)2]1/2

= Z sin (vt - f1)

mz
$
+ cz

#
+ kz = -my

$
= mv2Y sin vt

z = x - y

5The use of the concept of transmissibility in the design of vibration isolation systems is discussed in Chapter 9.
The expression for the force transmissibility can also be derived using the transfer-function approach described in
Section 3.14.



3.6 RESPONSE OF A DAMPED SYSTEM UNDER THE HARMONIC MOTION OF THE BASE 285

and by

The ratio Z/X is shown graphically in Fig. 3.17. The variation of is same as that of 

shown in Fig. 3.11(b).
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FIGURE 3.17 Variation of (Z/Y) or (MX/me) with

frequency ratio r = (v/vn).

E X A M P L E  3 . 4
Vehicle Moving on a Rough Road

Figure 3.18 shows a simple model of a motor vehicle that can vibrate in the vertical direction while

traveling over a rough road. The vehicle has a mass of 1200 kg. The suspension system has a spring

constant of 400 kN/m and a damping ratio of If the vehicle speed is 20 km/hr, determine the

displacement amplitude of the vehicle. The road surface varies sinusoidally with an amplitude of

and a wavelength of 6 m.

Solution: The frequency of the base excitation can be found by dividing the vehicle speed v km/hr

by the length of one cycle of road roughness:

For The natural frequency of the vehicle is given by

vn = A
k

m
= +400 * 103

1200
*1/2

= 18.2574 rad/s

v = 20 km/hr, v = 5.81778 rad/s.

v = 2pf = 2p+ v * 1000

3600
* 1

6
= 0.290889v rad/s

v

Y = 0.05 m

z = 0.5.
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and hence the frequency ratio r is

The amplitude ratio can be found from Eq. (3.68):

Thus the displacement amplitude of the vehicle is given by

This indicates that a 5-cm bump in the road is transmitted as a 5.5-cm bump to the chassis and the

passengers of the car. Thus in the present case the passengers feel an amplified motion (see Problem

3.107 for other situations).

*

X = 1.100964Y = 1.100964(0.05) = 0.055048 m

 = 1.100964

 
X

Y
= b 1 + (2zr)2

(1 - r2)2
+ (2zr)2

r 1/2

= b 1 + (2 * 0.5 * 0.318653)2

(1 - 0.318653)2
+ (2 * 0.5 * 0.318653)2

r 1/2

r =
v

vn
=

5.81778

18.2574
= 0.318653

m

Road surface

x(t)

y(t)

m

x(t)

y(t)

One cycle

Y

v km/hr

c

k
2

k c

k
2

y(t) * Y sin vt

(a)

(b)

FIGURE 3.18 Vehicle moving over a rough road.
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E X A M P L E  3 . 5
Machine on Resilient Foundation

A heavy machine, weighing 3000 N, is supported on a resilient foundation. The static deflection of

the foundation due to the weight of the machine is found to be 7.5 cm. It is observed that the machine

vibrates with an amplitude of 1 cm when the base of the foundation is subjected to harmonic oscilla-

tion at the undamped natural frequency of the system with an amplitude of 0.25 cm. Find 

a. the damping constant of the foundation, 

b. the dynamic force amplitude on the base, and 

c. the amplitude of the displacement of the machine relative to the base.

Solution:

a. The stiffness of the foundation can be found from its static deflection: of

At resonance Eq. (3.68) gives

(E.1)

The solution of Eq. (E.1) gives The damping constant is given by

(E.2)

b. The dynamic force amplitude on the base at can be found from Eq. (3.74):

(E.3)

c. The amplitude of the relative displacement of the machine at can be obtained from Eq. (3.77):

(E.4)

It can be noticed that and therefore, 

This is due to the phase differences between x, y, and z.

*

Z Z X - Y.Z = 0.00968 m;X = 0.01 m, Y = 0.0025 m,

Z =
Y

2z
=

0.0025

2 * 0.1291
= 0.00968 m

r = 1

FT = YkB 1 + 4z2

4z2
R

1/2

= kX = 40,000 * 0.01 = 400 N

r = 1

 = 903.0512 N-s/m

 c = z # cc = z22km = 0.1291 * 2 * 240,000 * (3000/9.81)

z = 0.1291.

X

Y
=

0.010

0.0025
= 4 = B 1 + (2z)2

(2z)2
R

1/2

(v = vn or r = 1),

machine/dst = 3000/0.075 = 40,000 N/m.
k = weight

3.7 Response of a Damped System Under Rotating Unbalance
Unbalance in rotating machinery is one of the main causes of vibration. A simplified

model of such a machine is shown in Fig. 3.19. The total mass of the machine is M, and

there are two eccentric masses m/2 rotating in opposite directions with a constant angular

velocity The centrifugal force due to each mass will cause excitation of the

mass M. We consider two equal masses m/2 rotating in opposite directions in order to have

the horizontal components of excitation of the two masses cancel each other. However, the

vertical components of excitation add together and act along the axis of symmetry inA A

(mev2)/2v.
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Fig. 3.19. If the angular position of the masses is measured from a horizontal position, the

total vertical component of the excitation is always given by The

equation of motion can be derived by the usual procedure:

(3.78)

The solution of this equation will be identical to Eq. (3.60) if we replace m and by M

and respectively. This solution can also be expressed as

(3.79)

where and X and denote the amplitude and the phase angle of vibration

given by

X =
mev2

C(k - Mv2)2
+ (cv)2 D 1/2
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me

M
¢ v
vn

2

H(iv)

fvn = 1k/M
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M
¢ v
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mev2,

F0

Mx
$
+ cx

#
+ kx = mev2 sin vt
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FIGURE 3.19 Rotating unbalanced masses.
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(3.80)

By defining and Eqs. (3.80) can be rewritten as

(3.81)

The variation of MX/me with r for different values of is shown in Fig. 3.17. On the other

hand, the graph of versus r remains as in Fig. 3.11(b). The following observations can be

made from Eq. (3.81) and Fig. 3.17:

1. All the curves begin at zero amplitude. The amplitude near resonance is

markedly affected by damping. Thus if the machine is to be run near resonance,

damping should be introduced purposefully to avoid dangerous amplitudes.

2. At very high speeds ( large), MX/me is almost unity, and the effect of damping is

negligible.

3. For the maximum of occurs when

(3.82)

The solution of Eq. (3.82) gives

with the corresponding maximum value of given by

(3.83)

Thus the peaks occur to the right of the resonance value of 

4. For does not attain a maximum. Its value grows from 0 at to

1 at r: q .

r = 0z 7
1

22
, c MX

me
d

r = 1.

a MX

me
b

max

=
1

2z21 - z2

MX

me

r =
1

21 - 2z2
7 1

d

dr
 a MX

me
b = 0

MX

me
0 6 z 6

1

22
,

v

(v = vn)

f

z

f = tan-1 + 2zr

1 - r2 *

MX

me
=

r2

C(1 - r2)2
+ (2zr)2 D 1/2

= r2 H(iv)

cc = 2Mvn,z = c/cc

f = tan-1+ cv

k - Mv2 *



E X A M P L E  3 . 6
Deflection of an Electric Motor due to Rotating Unbalance

An electric motor of mass M, mounted on an elastic foundation, is found to vibrate with a deflection

of 0.15 m at resonance (Fig. 3.20). It is known that the unbalanced mass of the motor is 8% of the

mass of the rotor due to manufacturing tolerances used, and the damping ratio of the foundation is

Determine the following:

a. the eccentricity or radial location of the unbalanced mass (e),

b. the peak deflection of the motor when the frequency ratio varies from resonance, and

c. the additional mass to be added uniformly to the motor if the deflection of the motor at reso-

nance is to be reduced to 0.1 m.

Assume that the eccentric mass remains unaltered when the additional mass is added to the motor.

a. From Eq. (3.81), the deflection at resonance is given by

MX

me
=

1

2z
=

1

2(0.025)
= 20

(r = 1)

z = 0.025.
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5. The force transmitted to the foundation due to rotating unbalanced force (F) can be

found as The magnitude (or maximum value) of F can be

derived as (see Problem 3.73):

(3.84)F = me v2 B 1 + 4z2r2

(1 - r2)2
+ 4z2r2R

1
2

F(t) = kx(t) + cx
#
(t).

k c

e

m x(t)
Electric
motor,
mass M

v

FIGURE 3.20
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from which the eccentricity can be found as

b. The peak deflection of the motor is given by Eq. (3.83):

from which the peak deflection can be determined as

c. If the additional mass added to the motor is denoted as the corresponding deflection is

given by Eq. (3.81):

which yields Thus the mass of the motor is to be increased by 50% in order to

reduce the deflection at resonance from 0.15 m to 0.10 m.

*

Ma = 0.5M.

(M + Ma)(0.1)

(0.08M)(0.09375)
= 20

Ma,

Xmax =
20.0063me

M
=

20.0063(0.08M)(0.09375)

M
= 0.150047 m

aMX

me
b

max

=
1

2z21 - z2
=

1

2(0.025)21 - 0.0252
= 20.0063

e =
MX

20m
=

M(0.15)

20(0.08 M)
= 0.09375 m

E X A M P L E  3 . 7

Francis Water Turbine

Figure 3.21 is a schematic diagram of a Francis water turbine, in which water flows from A into the

blades B and down into the tail race C. The rotor has a mass of 250 kg and an unbalance (me) of 5 kg-

mm. The radial clearance between the rotor and the stator is 5 mm. The turbine operates in the speed

range 600 to 6000 rpm. The steel shaft carrying the rotor can be assumed to be clamped at the

bearings. Determine the diameter of the shaft so that the rotor is always clear of the stator at all the

operating speeds of the turbine. Assume damping to be negligible.

Solution: The maximum amplitude of the shaft (rotor) due to rotating unbalance can be obtained

from Eq. (3.80) by setting as

(E.1)

where and the limiting value of The value of ranges from

600 rpm = 600 *
2p

60
= 20p rad/s

vX = 5 mm.me = 5 kg-mm, M = 250 kg,

X =
mev2

(k - Mv2)
=

mev2

k(1 - r2)

c = 0
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Bearing

Shaft

A A

5 mm 5 mm

Rotor

Stator

B B

l * 2 m

C

Tail race

FIGURE 3.21 Francis water turbine.

to

while the natural frequency of the system is given by

(E.2)

if k is in N/m. For rad/s, Eq. (E.1) gives

(E.3)

For Eq. (E.1) gives

 0.005 =

(5.0 * 10-3) * (200p)2

kB1 -

(200p)2

0.004k
R

=
200p2

k - 107
p

2

v = 200p rad/s,

 k = 10.04 * 104
p

2 N/m

 0.005 =

(5.0 * 10-3) * (20p)2

kB1 -

(20p)2

0.004 k
R

=
2p2

k - 105
p

2

v = 20p

vn = A
k

M
= A

k

250
= 0.0632452k rad/s

6000 rpm = 6000 *
2p

60
= 200p rad/s
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(E.4)

From Fig. 3.17, we find that the amplitude of vibration of the rotating shaft can be minimized by

making very large. This means that must be made small compared to that is, k

must be made small. This can be achieved by selecting the value of k as N/m.

Since the stiffness of a cantilever beam (shaft) supporting a load (rotor) at the end is given by

(E.5)

the diameter of the beam (shaft) can be found:

or

(E.6)

*

3.8 Forced Vibration with Coulomb Damping
For a single-degree-of-freedom system with Coulomb or dry-friction damping, subjected

to a harmonic force as in Fig. 3.22, the equation of motion is given by

(3.85)

where the sign of the friction force is positive (negative) when the mass

moves from left to right (right to left). The exact solution of Eq. (3.85) is quite involved.

However, we can expect that if the dry-friction damping force is large, the motion of the

mass will be discontinuous. On the other hand, if the dry-friction force is small compared

to the amplitude of the applied force the steady-state solution is expected to be nearly

harmonic. In this case, we can find an approximate solution of Eq. (3.85) by finding an

equivalent viscous-damping ratio. To find such a ratio, we equate the energy dissipated due

to dry friction to the energy dissipated by an equivalent viscous damper during a full cycle

of motion. If the amplitude of motion is denoted as X, the energy dissipated by the friction

force in a quarter cycle is Hence in a full cycle, the energy dissipated by dry-

friction damping is given by

(3.86)¢W = 4mNX

mNX.mN

F0,

(mN = mmg)

mx
$
+ kx ; mN = F(t) = F0 sin vt

F(t) = F0 sin vt

d = 0.1270 m = 127 mm

d4
=

64kl3

3pE
=

(64)(10.04 * 104
p

2)(23)

3p(2.07 * 1011)
= 2.6005 * 10-4 m4

k =
3EI

l3
=

3E

l3
+pd4

64
*

10.04 * 104
p

2
vvnr = v/vn

 k = 10.04 * 106
p

2 N/m
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If the equivalent viscous-damping constant is denoted as the energy dissipated during

a full cycle (see Eq. (2.94)) will be

(3.87)

By equating Eqs. (3.86) and (3.87), we obtain

(3.88)

Thus the steady-state response is given by

(3.89)

where the amplitude X can be found from Eq. (3.60):

(3.90)

with

(3.91)zeq =

ceq

cc
=

ceq

2mvn
=

4mN

2mvnpvX
=

2mN

pmvvnX

X =
F0

B(k - mv2)2
+ (ceqv)2R 1/2

=
(F0/k)

B ¢1 -
v2

vn
2

2

+ ¢2zeq

v

vn

2R 1/2

xp(t) = X sin(vt - f)

ceq =
4mN

pvX

¢W = pceqvX2

ceq,

m

mg

k

(a)

(b)

Displaced
to left (x  0)

Displaced
to right (x  0)

x

F(t)  F0 sin vt

F0 sin vt

mx
kx

mN mN

N

mg
F0 sin vt

mx
kx

N

FIGURE 3.22 Single-degree-of-freedom system with Coulomb damping.
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Substitution of Eq. (3.91) into Eq. (3.90) gives

(3.92)

The solution of this equation gives the amplitude X as

(3.93)

As stated earlier, Eq. (3.93) can be used only if the friction force is small compared to 

In fact, the limiting value of the friction force can be found from Eq. (3.93). To avoid

imaginary values of X, we need to have

If this condition is not satisfied, the exact analysis, given in reference [3.3], is to be used.

The phase angle appearing in Eq. (3.89) can be found using Eq. (3.52):

(3.94)

Substituting Eq. (3.93) into Eq. (3.94) for X, we obtain

(3.95)

Equation (3.94) shows that is a constant for a given value of is discontin-

uous at (resonance), since it takes a positive value for and a negative

value for Thus Eq. (3.95) can also be expressed asv/vn 7 1.
v/vn 6 1v/vn = 1

fF0/mN.tan f

f = tan-1 E 4mN

pF0b 1 - ¢4mN

pF0

2 r1/2
U

f = tan-1 £ ceqv

k - mv2
= tan-1 D 2zeq 

v

vn

1 -
v2

vn
2

T = tan-1 d 4mN

pkX

1 -
v2

vn
2

t
f

1 - ¢4mN

pF0

2

7 0 or F0

mN
7

4

p

mN
F0.

X =
F0

k
 D 1 - ¢4mN

pF0

2

¢1 -
v2

vn
2

2
T 1/2

X =

(F0/k)B ¢1 -
v2

vn
2

2

+ ¢4mN

pkX

2R 1/2
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(3.96)

Equation (3.93) shows that friction serves to limit the amplitude of forced vibration

for However, at resonance the amplitude becomes infinite. This

can be explained as follows. The energy directed into the system over one cycle when it is

excited harmonically at resonance is

(3.97)

Since Eq. (3.94) gives at resonance, Eq. (3.97) becomes

(3.98)

The energy dissipated from the system is given by Eq. (3.86). Since for X

to be real-valued, at resonance (see Fig. 3.23). Thus more energy is directed

into the system per cycle than is dissipated per cycle. This extra energy is used to build up

the amplitude of vibration. For the nonresonant condition the energy input

can be found from Eq. (3.97):

(v/vn Z 1),

¢W¿ 7 ¢W
pF0X 7 4mNX

¢W¿ = F0XvL
2p/v

0
 sin2 vt dt = pF0X

f = 90°

 = L
t=2p/v

0
F0 sin vt # [vX cos (vt - f)] dt

 ¢W¿ = Lcycle

F # dx = L
t

0
F 

dx

dt
 dt

(v/vn = 1),v/vn Z 1.

f = tan-1 E ;
4mN

pF0b 1 - ¢4mN

pF0

2 r1/2
U

O
X

W

W   pF0X

E
ne

rg
y 

in
pu

t

Energy dissi
pated

1

1

4mN

W  4mNX
pF0

FIGURE 3.23 Energy input and energy

dissipated with Coulomb damping.
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(3.99)

Due to the presence of in Eq. (3.99), the input energy curve in Fig. 3.23 is made to

coincide with the dissipated energy curve, so the amplitude is limited. Thus the phase of

the motion can be seen to limit the amplitude of the motion.

The periodic response of a spring-mass system with Coulomb damping subjected to

base excitation is given in references [3.10, 3.11].

f

sin f

¢W¿ = vF0XL
2p/v

0
 sin vt cos(vt - f) dt = pF0X sin f

E X A M P L E  3 . 8
Spring-Mass System with Coulomb Damping

A spring-mass system, having a mass of 10 kg and a spring of stiffness of 4000 N/m, vibrates on a

horizontal surface. The coefficient of friction is 0.12. When subjected to a harmonic force of fre-

quency 2 Hz, the mass is found to vibrate with an amplitude of 40 mm. Find the amplitude of the har-

monic force applied to the mass.

Solution: The vertical force (weight) of the mass is The natural

frequency is

and the frequency ratio is

The amplitude of vibration X is given by Eq. (3.93):

The solution of this equation gives 

*

F0 = 97.9874 N.

 0.04 =
F0

4000
 D 1 - b 4(0.12)(98.1)

pF0
r2

(1 - 0.62832)2
T 1/2

 X =
F0

k
 E 1 - ¢4mN

pF0

2

b 1 - ¢ v
vn

2 r2
U 1/2

v

vn
=

2 * 2p

20
= 0.6283

vn = A
k

m
= A

4000

10
= 20 rad/s

N = mg = 10 * 9.81 = 98.1 N.
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3.9 Forced Vibration with Hysteresis Damping
Consider a single-degree-of-freedom system with hysteresis damping and subjected to a

harmonic force as indicated in Fig. 3.24. The equation of motion of the

mass can be derived, using Eq. (2.157), as

(3.100)

where denotes the damping force.6 Although the solution of Eq.

(3.100) is quite involved for a general forcing function F(t), our interest is to find the

response under a harmonic force.

The steady-state solution of Eq. (3.100) can be assumed:

(3.101)

By substituting Eq. (3.101) into Eq. (3.100), we obtain

(3.102)

and

(3.103)f = tan-1 C b

¢1 -
v2

vn
2

S

X =
F0

k B ¢1 -
v2

vn
2

2

+ b2R 1/2

xp(t) = X sin (vt - f)

(bk/v)x
#
= (h/v)x

#

mx
$

+
bk

v
 x
#
+ kx = F0 sin vt

F(t) = F0 sin vt,

6In contrast to viscous damping, the damping force here can be seen to be a function of the forcing frequency 
(see Section 2.10).

v

m

m

(a)

(b)

x(t)

F0 sin vt

mxkx

x
bk

v

F(t) * F0 sin vt

k

b

FIGURE 3.24 System with hysteresis damping.
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Equations (3.102) and (3.103) are shown plotted in Fig. 3.25 for several values of A

comparison of Fig. 3.25 with Fig. 3.11 for viscous damping reveals the following:

1. The amplitude ratio

attains its maximum value of at the resonant frequency in the case

of hysteresis damping, while it occurs at a frequency below resonance in

the case of viscous damping.

2. The phase angle has a value of at in the case of hysteresis damping,

while it has a value of zero at in the case of viscous damping. This indicates

that the response can never be in phase with the forcing function in the case of hys-

teresis damping.

v = 0
v = 0tan-1(b)f

(v 6 vn)
(v = vn)F0 

/kb

X

(F0 
/k)

b.

0 1 2 3 4 5

b * 0
b * 0.2
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b * 1.0

0

1

2

3

4

5

1 2 3 4 5

vn

v

vn

v

2
p

p

f

b * 1.0

b * 0.5

b * 0.2

b * 0

X

(F
o
/k

)

FIGURE 3.25 Steady-state response.
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Note that if the harmonic excitation is assumed to be in Fig. 3.24, the

equation of motion becomes

(3.104)

In this case, the response x(t) is also a harmonic function involving the factor Hence

is given by and Eq. (3.104) becomes

(3.105)

where the quantity is called the complex stiffness or complex damping [3.7].

The steady-state solution of Eq. (3.105) is given by the real part of

(3.106)

3.10 Forced Motion with Other Types of Damping
Viscous damping is the simplest form of damping to use in practice, since it leads to linear

equations of motion. In the cases of Coulomb and hysteretic damping, we defined equiva-

lent viscous-damping coefficients to simplify the analysis. Even for a more complex form of

damping, we define an equivalent viscous-damping coefficient, as illustrated in the follow-

ing examples. The practical use of equivalent damping is discussed in reference [3.12].

x(t) =
F0eivt

k B1 - ¢ v
vn

2

+ ib R

k(1 + ib)

mx
$
+ k(1 + ib)x = F0eivt

ivx(t),x
#
(t)

eivt.

mx
$
+
bk

v
 x
#
+ kx = F0eivt

F(t) = F0eivt

E X A M P L E  3 . 9
Quadratic Damping

Find the equivalent viscous-damping coefficient corresponding to quadratic or velocity-squared

damping that is present when a body moves in a turbulent fluid flow.

Solution: The damping force is assumed to be

(E.1)

where a is a constant, is the relative velocity across the damper, and the negative (positive) sign

must be used in Eq. (E.1) when is positive (negative). The energy dissipated per cycle during har-

monic motion is given by

(E.2)¢W = 2L
x

-x
a(x

#
)2 dx = 2X3

L
p/2

-p/2
 av2 cos3 vt d(vt) =

8

3
 v2aX3

x(t) = X sin vt
x
#

x
#

Fd = ;a(x
#
)2



Jean Baptiste Joseph Fourier (1768 1830) was a French mathematician and a
professor at the Ecole Polytechnique in Paris. His works on heat flow, published
in 1822, and on trigonometric series are well known. The expansion of a periodic
function in terms of harmonic functions has been named after him as the

Fourier series.
(Reproduced with permission from Applied Mechanics Reviews.)
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methods those of convolution integral and of Laplace transform. The method of convolu-

tion or Duhamel integral makes use of the impulse response function of the system. The

method is also used to find the response to base excitation. Several examples are presented to

illustrate its use. The concept of response spectra corresponding to specific forcing func-

tions and their use in finding the maximum response of the system is also outlined. The

response spectrum corresponding to the base excitation, such as the one caused by an

earthquake, is also considered. Typical earthquake response spectra and their use in finding

the responses of building frames are illustrated. The concept of pseudo velocity and the

associated pseudo spectrum are also defined. The design of mechanical systems under a

shock environment is presented with an illustrative example. The Laplace transform

method and its use in finding the response of both first- and second-order systems are pre-

sented. The responses under impulse, step, and ramp forcing functions are considered.

Inelastic and elastic collision problems are considered as applications of impulse response

computations. The analysis of the step response and the description of transient response in

terms of peak time, rise time, maximum overshoot, settling time, and delay time are pre-

sented. The response of systems under irregular forcing conditions using numerical meth-

ods, including the fourth-order Runge-Kutta method, is presented with illustrative

examples. Finally the use of MATLAB programs in finding the response of a system under

arbitrary forcing functions is illustrated with examples.

Learning Objectives

After completing this chapter, you should be able to do the following:

* Find the responses of single-degree-of-freedom systems subjected to general periodic

forces using Fourier series.

* Use the method of convolution or Duhamel integral to solve vibration problems of

systems subjected to arbitrary forces.

* Find the response of systems subjected to earthquakes using response spectra.

* Solve undamped and damped systems subjected to arbitrary forces, including

impulse, step, and ramp forces, using Laplace transform.

* Understand the characteristics of transient response, such as peak time, overshoot,

settling time, rise time, and decay time, and procedures for their estimation.

* Apply numerical methods to solve vibration problems of systems subjected to forces

that are described numerically.

* Solve forced-vibration problems using MATLAB.

4.1 Introduction

In Chapter 3, we considered the response of single-degree-of-freedom systems subjected to

harmonic excitation. However, many practical systems are subjected to several types of

forcing functions that are not harmonic. The general forcing functions may be periodic

(nonharmonic) or nonperiodic. The nonperiodic forces include forces such as a suddenly

applied constant force (called a step force), a linearly increasing force (called a ramp force),

and an exponentially varying force. A nonperiodic forcing function may be acting for a
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short, long, or infinite duration. A forcing function or excitation of short duration compared

to the natural time period of the system is called a shock. Examples of general forcing func-

tions are the motion imparted by a cam to the follower, the vibration felt by an instrument

when its package is dropped from a height, the force applied to the foundation of a forging

press, the motion of an automobile when it hits a pothole, and the ground vibration of a

building frame during an earthquake.

If the forcing function is periodic but not harmonic, it can be replaced by a sum of har-

monic functions using the harmonic analysis procedure discussed in Section 1.11. Using

the principle of superposition, the response of the system can then be determined by super-

posing the responses due to the individual harmonic forcing functions.

The response of a system subjected to any type of nonperiodic force is commonly

found using the following methods:

1. Convolution integral.

2. Laplace transform.

3. Numerical methods.

The first two methods are analytical ones, in which the response or solution is expressed in

a way that helps in studying the behavior of the system under the applied force with respect

to various parameters and in designing the system. The third method, on the other hand,

can be used to find the response of a system under any arbitrary force for which an analyt-

ical solution is difficult or impossible to find. However, the solution found is applicable

only for the particular set of parameter values used in finding the solution. This makes it

difficult to study the behavior of the system when the parameters are varied. This chapter

presents all three methods of solution.

4.2 Response Under a General Periodic Force
When the external force F(t) is periodic with period it can be expanded in a

Fourier series (see Section 1.11):

(4.1)

where

(4.2)

and

(4.3)

The response of systems under general periodic forces is considered in this section for both

first- and second-order systems. First-order systems are those for which the equation of

bj =
2

tL
t

0
F(t) sin jv t dt,  j = 1, 2, Á

aj =
2

tL
t

0
F(t) cos jv t dt,  j = 0, 1, 2, Á

F(t) =
a0

2
+ a

q

j=1
 aj cos jv t + a

q

j=1
 bj sin jv t

t = 2p/v,
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Damper (ct)

Rotor (J)

v(t) T(t)

(c)

Jv * ctv + T(t)
.

k
c

(b)

F(t)

Rigid bar
(no mass)

x(t)

cx * kx + f(t)
.

c

(a)

k

A

B

y(t)

x(t)

Rigid bar
(no mass)

Rigid bar
(no mass)

cx * kx + ky(t)
.

FIGURE 4.1 Examples of first-order systems.

motion is a first-order differential equation. Similarly, second-order systems are those for

which the equation of motion is a second-order differential equation. Typical examples of

first- and second-order systems are shown in Figs. 4.1 and 4.2, respectively.

4.2.1
First-Order
Systems

Consider a spring-damper system subjected to a periodic excitation as shown in Fig.

4.1(a). The equation of motion of the system is given by

(4.4)

where y(t) is the periodic motion (or excitation) imparted to the system at point A (for

example, by a cam). If the periodic displacement of point A, y(t), is expressed in Fourier

series as indicated by the right-hand side of Eq. (4.1), the equation of motion of the system

can be expressed as

(4.5)x
#
+ ax = ay = A0 + a

q

j=1
Aj   

sin vjt + a

q

j=1
Bj cos vj 

t

cx
#
+ k(x - y) = 0
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where

(4.6)

The solution of Eq. (4.5) is presented in Example 4.1.

a =
k

c
,      A0 =

aa0

2
,      Aj = aaj,      Bj = abj,      vj = jv,      j = 1, 2, 3,Á

E X A M P L E  4 . 1

m

k
c

(a) (b)

(c)

m

k

c

Rigid bar
(no mass)

Torsional spring
(kt)Torsional damper

(ct)
Rotor (J)

T(t)
u(t)

f(t)

x(t)
y(t)

x(t)

mx * cx * kx + f(t)
.. .

mx * cx * kx + ky(t)
.. .

Ju * ctu * ktu + T(t)
.. .

FIGURE 4.2 Examples of second-order systems.

Response of a First-Order System under Periodic Force

Find the response of the spring-damper system shown in Fig. 4.1(a) subjected to a periodic force

with the equation of motion given by Eq. (4.5).

Solution: It can be seen that the right-hand side of the equation of motion, Eq. (4.5), is a constant

plus a linear sum of harmonic (sine and cosine) functions. Using the principle of superposition, the

steady-state solution of Eq. (4.5) can be found by summing the steady-state solutions corresponding

to the individual forcing terms on the right-hand side of Eq. (4.5).
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The equation of motion corresponding to the constant force can be expressed, using for x, as

(E.1)

The solution of Eq. (E.1) is given by (can be verified by substituting in Eq. (E.1)):

(E.2)

The equation of motion under the force can be expressed as

(E.3)

in which the steady-state solution of Eq. (E.3) can be assumed in the form

(E.4)

where the magnitude and the phase angle denote the unknown constants to be determined. The

solution in Eq. (E.4) can be expressed as the imaginary part of the following solution in complex form:

(E.5)

where denotes the complex number:

(E.6)

Noting that the time derivative of is given by

(E.7)

Eq. (E.3) can be expressed with the forcing term in complex form (with the understanding that we

are interested only in the imaginary part of the solution):

(E.8)

By inserting Eqs. (E.5) and (E.7) into Eq. (E.8), we obtain

(E.9)

Since Eq. (E.9) can be reduced to

(E.10)

or

(E.11)Uj =

Aj

a + ivj

ivjUj + aUj = Aj

ei vj  

t
Z 0,

ivjUjeivjt + aUjeivj t = Ajeivj t

x
#

j + axj = Ajei vj 
t
= Aj(cos vj 

t + i sin vj 
t)

x
#

j(t) = ivj 
Ujei vj 

t

x j(t)

Uj = Xje
-i fj

Uj

xj(t) = Im:Xje
i(vj t-fj); = Xjei vj 

te-i fj = Ujei vj 
t

fjXj

xj(t) = Xj sin(vj 

t - fj)

x
#

j + axj = A j sin vj 

t

Aj sin vj 

t

x0(t) =
A0

a

x
#

0 + ax0 = A0

x0A0
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Equations (E.6) and (E.11) yield

(E.12)

By expressing  as

(E.13)

Eq. (E.13) can be rewritten as

(E.14)

where

(E.15)

By using Eq. (E.14) in Eq. (E.12), we find that

(E.16)

The solution of Eq. (E.3) is thus given by Eq. (E.4) with and given by Eq. (E.16). The equation

of motion under the force can be expressed as

(E.17)

By assuming the steady-state solution of Eq. (E.17) in the form

(E.18)

the constants and can be determined, by proceeding as in the case of the solution of Eq. (E.3), as

(E.19)

The complete steady-state (or particular) solution of Eq. (4.5) can be expressed as

(E.20)

where and are given by Eq. (4.6).vja, A0, Aj, Bj,
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Note: The total solution of Eq. (4.5) is given by the sum of the homogeneous and particular (or

steady-state) solutions:

(E.21)

where the particular solution is given by Eq. (E.20) and the homogeneous solution of Eq. (4.5) can be

expressed as

(E.22)

where C is an unknown constant to be determined using the initial condition of the system. The total

solution can be expressed as

(E.23)

When the initial condition is used in Eq. (E.23), we obtain

(E.24)

which yields

(E.25)

Thus the total solution of Eq. (4.5) becomes

(E.26)

The features of the response of the system can be studied by considering a simpler type of forcing

function through the following example.

*

 +
A0

a
+ a

q

j=1
Xj sin(vd 

t - fj) + a

q

j=1
Yj cos(vd 

t - fj)

 x(t) = Bx0 -
A0

a
+ a

q

j=1
Xj sin fj - a

q

j=1
Yj cos fjRe-a t

C = x0 -
A0

a
+ a

q

j=1
Xj sin fj - a

q

j=1
Yj cos fj

x0 = C +
A0

a
- a

q

j=1
Xj sin fj + a

q

j=1
Yi cos fj

x(t = 0) = x0

x(t) = Ce-a t
+

A0

a
+ a

q

j=1
Xj sin(vj 

t - fj) + a

q

j=1
Yj cos(vj 

t - fj)

xh(t) = Ce-at

x(t) = xh(t) + xp(t)

E X A M P L E  4 . 2
Response of a First-Order System

Determine the response of a spring-damper system, similar to the one shown in Fig. 4.1(a), with the

equation of motion:

Assume the initial condition as x(t = 0) = 0.

x
#
+ 1.5x = 7.5 + 4.5 cos t + 3 sin 5t
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Solution: The equation of motion of the system is given by

(E.1)

We first find the solution of the differential equation by considering one forcing term at a time given

on the right-hand side of Eq. (E.1) and then adding the solutions to find the total solution of Eq. (E.1).

For the constant term, the equation to be solved is

(E.2)

The solution of Eq. (E.2) is For the cosine term, the equation to be solved is

given by

(E.3)

Using the steady-state solution indicated in Eq. (E.21) of Example 4.1, we can express the solution

of Eq. (E.3) as

(E.4)

where

(E.5)

and

(E.6)

Similarly, for the sine term, the equation to be solved is

(E.7)

Using the steady-state solution indicated in Eq. (E.4) of Example 4.1, we can express the solution of

Eq. (E.7) as

(E.8)

where

(E.9)

and

(E.10)

Thus the total particular solution of Eq. (E.1) is given by the sum of the solutions of Eqs. (E.2), (E.3)

and (E.7):

(E.11)x(t) = 5 + 2.4961 cos(t - 0.5880) + 0.5747 sin(5 t - 1.2793)

f = tan-1a 5

1.5
b = 1.2793 rad

X =
3

2(1.5)2
+ (5)2

=
3

227.25
= 0.5747

x(t) = X sin(5 t - f)

x
#
+ 1.5x = 3 sin 5  t

f = tan-1a 1

1.5
b = 0.5880 rad

Y =
4.5

2(1.5)2
+ (1)2

=
4.5

23.25
= 2.4961

x(t) = Y cos(t - f)

x
#
+ 1.5x = 4.5 cos t

x(t) = 7.5/1.5 = 5.

x
#
+ 1.5x = 7.5

x
#
+ 1.5x = 7.5 + 4.5 cos t + 3 sin 5t
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The forcing function given by the right-hand-side expression in Eq. (E.1) and the steady-state

response of the system given by Eq. (E.11) are shown graphically in Fig. 4.3. The first two terms of

the response (given by the first two terms on the right-hand side of Eq. (E.11)) are also shown in

Fig. 4.3. It can be seen that system does not filter the constant term. However, it filters the lower-

frequency (cosine term) to some extent and the higher-frequency (sine time) to a larger extent.

*

4.2.2
Second-Order
Systems

Let a spring-mass-damper system, Fig. 4.2(a), be subjected to a periodic force. This is a

second-order system because the governing equation is a second-order differential equation:

(4.7)

If the forcing function f (t) is periodic, it can be expressed in Fourier series so that the equa-

tion of motion becomes

(4.8)

The determination of the solution of Eq. (4.8) is illustrated in Example 4.3.

mx
$
+ cx

#
+ kx = F(t) =

a0

2
+ a

q

i=1
aj cos jvt + a

q

j=1
bj sin jvt

mx
$
+ cx

#
+ kx = f(t)

E X A M P L E  4 . 3
Response of a Second-Order System Under Periodic Force

Determine the response of a spring-mass-damper system subjected to a periodic force with the

equation of motion given by Eq. (4.8). Assume the initial conditions as zero.

0
0

1

2

3

4

5

6

7

8

9

10
Forcing function

First two terms
of x(t)

All three 
terms of x(t)

2 4 6 8 10 12 14 16

FIGURE 4.3



4.2 RESPONSE UNDER A GENERAL PERIODIC FORCE 373

Solution: The right-hand side of Eq. (4.8) is a constant plus a sum of harmonic functions. Using the

principle of superposition, the steady-state solution of Eq. (4.4) is the sum of the steady-state

solutions of the following equations:

(E.1)

(E.2)

(E.3)

Noting that the solution of Eq. (E.1) is given by

(E.4)

and, using the results of Section 3.4, we can express the solutions of Eqs. (E.2) and (E.3), respec-

tively, as

(E.5)

(E.6)

where

(E.7)

and

(E.8)

Thus the complete steady-state solution of Eq. (4.8) is given by

(E.9)

It can be seen from the solution, Eq. (E.9), that the amplitude and phase shift corresponding to the jth

term depend on j. If for any j, the amplitude of the corresponding harmonic will be com-

paratively large. This will be particularly true for small values of j and Further, as j becomes larger,

the amplitude becomes smaller and the corresponding terms tend to zero. Thus the first few terms are

usually sufficient to obtain the response with reasonable accuracy.

The solution given by Eq. (E.9) denotes the steady-state response of the system. The transient

part of the solution arising from the initial conditions can also be included to find the complete

solution. To find the complete solution, we need to evaluate the arbitrary constants by setting the

z.
jv = vn,

 + a

q

j=1
 

(bj/k)

2(1 - j2r2)2
+ (2zjr)2

  sin( jv t - fj)

 xp(t) =
a0

2k
+ a

q

j=1
 

(aj/k)

2(1 - j2r2)2
+ (2zjr)2

  cos( jv t - fj)

r =
v

vn

fj = tan-1 + 2zjr

1 - j2r2
*

 xp(t) =

(bj 
/k)

2(1 - j2r2)2
+ (2zjr)2

  sin(jv t - fj)

 xp(t) =

(aj 
/k)

2(1 - j2r2)2
+ (2zjr)2

  cos(jv t - fj)

xp(t) =
a0

2k

 mx
$
+ cx

#
+ kx = bj sin jv t

 mx
$
+ cx

#
+ kx = aj cos jv t

 mx
$
+ cx

#
+ kx =

a0

2
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m

p(t)

x(t)

Chamber

(a) (b)

50 mm
diameter

k c

0 1

50,000

t * 2 2t * 43 5

t (sec)

50,000t
50,000(2 + t)

p(t) * pressure, Pa

FIGURE 4.4 Periodic vibration of a hydraulic valve.

value of the complete solution and its derivative to the specified values of initial displacement x(0)

and the initial velocity This results in a complicated expression for the transient part of the

total solution.

*

x
#

(0).

E X A M P L E  4 . 4
Periodic Vibration of a Hydraulic Valve

In the study of vibrations of valves used in hydraulic control systems, the valve and its elastic stem

are modeled as a damped spring-mass system, as shown in Fig. 4.4(a). In addition to the spring force

and damping force, there is a fluid-pressure force on the valve that changes with the amount of open-

ing or closing of the valve. Find the steady-state response of the valve when the pressure in the cham-

ber varies as indicated in Fig. 4.4(b). Assume and 

Solution: The valve can be considered as a mass connected to a spring and a damper on one side and

subjected to a forcing function F(t) on the other side. The forcing function can be expressed as

(E.1)

where A is the cross-sectional area of the chamber, given by

(E.2)

and p(t) is the pressure acting on the valve at any instant t. Since p(t) is periodic with period

seconds and A is a constant, F(t) is also a periodic function of period seconds. Thet = 2t = 2

A =

p(50)2

4
= 625 p mm2

= 0.000625 p m2

F(t) = Ap(t)

m = 0.25 kg.k = 2500 N/m, c = 10 N-s/m,
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frequency of the forcing function is F(t) can be expressed in a Fourier

series as

(E.3)

where and are given by Eqs. (4.2) and (4.3). Since the function F(t) is given by

(E.4)

the Fourier coefficients and can be computed with the help of Eqs. (4.2) and (4.3):

(E.5)

(E.6)

(E.7)

(E.8)

(E.9)

(E.10)

(E.11)

Likewise, we can obtain By considering only the first

three harmonics, the forcing function can be approximated:

(E.12)F(t) M 25,000A -
2 * 105A

p
2

 cos v t -
2 * 105A

9p2
 cos 3vt

a4 = a6 =
Á = b4 = b5 = b6 =

Á = 0.

 b3 =
2

2
BL

1

0
50,000At sin 3pt dt + L

2

1
50,000A(2 - t) sin 3pt dtR = 0

 = -  
2 * 105A

9p2

 a3 =
2

2
BL

1

0
50,000At cos 3pt dt + L

2

1
50,000A(2 - t) cos 3pt dtR

 b2 =
2

2
BL

1

0
50,000At sin 2pt dt + L

2

1
50,000A(2 - t) sin 2pt dtR = 0

 a2 =
2

2
BL

1

0
50,000At cos 2pt dt + L

2

1
50,000A(2 - t) cos 2pt dtR = 0

 b1 =
2

2
BL

1

0
50,000At sin pt dt + L

2

1
50,000A(2 - t) sin pt dtR = 0

 = -  
2 * 105A

p
2

 a1 =
2

2
BL

1

0
50,000At cos pt dt + L

2

1
50,000A(2 - t) cos pt dtR

 a0 =
2

2
BL

1

0
50,000At dt + L

2

1
50,000A(2 - t) dtR = 50,000A

bjaj

F(t) = c 50,000At for 0 * t *
t

2

50,000A(2 - t) for 
t

2
* t * t

bjaj

 + b1  sin v t + b2  sin 2v t + Á

 F(t) =
a0

2
+ a1  cos v t + a2  cos 2v t + Á

v = (2p/t) = p rad/s.
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The steady-state response of the valve to the forcing function of Eq. (E.12) can be expressed as

(E.13)

The natural frequency of the valve is given by

(E.14)

and the forcing frequency by

(E.15)

Thus the frequency ratio can be obtained:

(E.16)

and the damping ratio:

(E.17)

The phase angles and can be computed as follows:

(E.18)

and

(E.19)

In view of Eqs. (E.2) and (E.14) to (E.19), the solution can be written as

(E.20)

*

 - 0.0017828 cos(3pt - 0.0380483) m

 xp(t) = 0.019635 - 0.015930 cos(pt - 0.0125664)

 = tan-1 + 6 * 0.2 * 0.031416

1 - 9(0.031416)2
* = 0.0380483 rad

 f3 = tan-1 + 6zr

1 - 9r2
*

 = tan-1 + 2 * 0.2 * 0.031416

1 - 0.0314162
* = 0.0125664 rad

 f1 = tan-1 + 2zr

1 - r2
*

f3f1

z =
c

cc
=

c

2mvn
=

10.0

2(0.25)(100)
= 0.2

r =
v

vn
=

p

100
= 0.031416

v =
2p

t
=

2p

2
= p rad/s

v

vn = A
k

m
= A

2500

0.25
= 100 rad/s

 -
(2 * 105A/(9kp2))

2(1 - 9r2)2
+ (6zr)2

 cos (3v t - f3)

 xp(t) =

25,000A

k
-

(2 * 105A/(kp2))

2(1 - r2)2
+ (2zr)2

 cos (v t - f1)
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E X A M P L E  4 . 5
Total Response Under Harmonic Base Excitation

Find the total response of a viscously damped single-degree-of-freedom system subjected to a har-

monic base excitation for the following data: 

Solution: The equation of motion of the system is given by (see Eq. (3.65)):

(E.1)

Noting that Eq. (E.1) is similar to Eq. (4.8) with , and 

the steady-state response of the system can be expressed, using Eq. (E.9) of Example 4.3, as

(E.2)

For the given data, we find

The solution of the homogeneous equation is given by (see Eq. (2.70)):

(E.3)

where and are unknown constants. The total solution can be expressed as the superposition of

and as

(E.4)

where the unknowns and are to be found from the initial conditions. The velocity of the mass

can be expressed from Eq. (E.4) as

(E.5) - 0.006665 sin (5 t - 0.02666) + 0.266572 cos (5 t - 0.02666)

 x
#
(t) =

dx

dt
 (t) = -X0e- 

t cos (19.975 t - f0) - 19.975X0e- 
t sin (19.975 t - f0)

f0X0

 + 0.053314 sin (5 t - 0.02666)

 = X0 e- 
t cos (19.975 t - f0) + 0.001333 cos (5 t - 0.02666)

 x(t) = X0e- 
t cos (19.975 t - f0) +

1

0.937833
 B 5

4000
 cos (5 t - f1) +

200

4000
 sin (5 t - f1)R

xp(t)xh(t)
f0X0

xh(t) = X0e- 
zvn t cos (vd 

t - f0) = X0e- 
t cos (19.975 t - f0)

 2(1 - r2)2
+ (2 zr)2

= 2(1 - 0.252)2
+ (2 (0.05) (0.25))2

= 0.937833.

 f1 = tan-1 ¢ 2 zr

1 - r2
= tan-1 ¢2 (0.05) (0.25)

1 - (0.25)2
= 0.02666 rad

 a1 = cvY = (20) (5) (0.05) = 5,        b1 = kY = (4000) (0.05) = 200

 vd = 21 - z2 vn = 19.975 rad/s

 r =
v

vn
=

5

20
= 0.25,        z =

c

cc
=

c

22k m
=

20

22(4000) (10)
= 0.05

 Y = 0.05 m,        v = 5 rad/s,       vn = A
k

m
= A

4000

10
= 20 rad/s

xp(t) =
1

2(1 - r2)2
+ (2 zr)2

 Ba1

k
 cos (v t - f1) +

b1

k
 sin (v t - f1)R

2, 3, Á ,
ai = bi = 0; i =a0 = 0, a1 = cvY, b1 = kY

mx
$
+ cx

#
+ kx = ky + cy

#
= kY sin vt + cvY cos v t

x
#

0 = 10 m/s.x0 = 0.02 m,0.05 sin 5 t m,
y(t) =k = 4000 N/m,c = 20 N-s/m,m = 10 kg,
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Using Eqs. (E.4) and (E.5), we find

or

(E.6)

and

or

(E.7)

The solution of Eqs. (E.6) and (E.7) yields and Thus the total

response of the mass under base excitation, in meters, is given by

(E.8)

Note: Equation (E.8) is plotted in Example 4.32.

*

 + 0.001333 cos (5 t - 0.02666) + 0.053314 sin (5 t - 0.02666)

 x(t) = 0.488695e- 
t cos (19.975 t - 1.529683)

f0 = 1.529683 rad.X0 = 0.488695

- X0 cos f0 + 19.975 sin f0 = 9.733345

 + 0.006665 sin (0.02666) + 0.266572 cos (0.02666)

 x
#
0 = x

#
(t = 0) = 10 = -X0 cos f0 + 19.975 X0 sin f0

X0 cos f0 = 0.020088

x0 = x(t = 0) = 0.02 = X0 cos f0 + 0.001333 cos(0.02666) - 0.053314 sin (0.02666)

4.3 Response Under a Periodic Force of Irregular Form
In some cases, the force acting on a system may be quite irregular and may be determined

only experimentally. Examples of such forces include wind and earthquake-induced forces.

In such cases, the forces will be available in graphical form and no analytical expression can

be found to describe F(t). Sometimes, the value of F(t) may be available only at a number of

discrete points In all these cases, it is possible to find the Fourier coefficients

by using a numerical integration procedure, as described in Section 1.11. If 

denote the values of F(t) at respectively, where N denotes an even number of

equidistant points in one time period as shown in Fig. 4.5, the application of

trapezoidal rule [4.1] gives

(4.9)

(4.10)

(4.11) bj =
2

N
 a

N

i=1
 Fi sin 

2jpti
t

,  j = 1, 2, Á

 aj =
2

N
 a

N

i=1
 Fi cos 

2jpti
t

,  j = 1, 2, Á

 a0 =
2

N
 a

N

i=1
 Fi

t(t = N¢t),
t1, t2, Á , tN,

F1, F2, Á , FN

t1, t2, Á , tN.
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Once the Fourier coefficients and are known, the steady-state response of the

system can be found using Eq. (4.9) with

(4.12)r = + 2p

tvn
*

bja0, aj,

F(t)

F1 F2

F3

FN 1

tN 1

tN

FN

F4

F5

t5t4t3t2t1

t

t

t t t

O

t  N t

2t

FIGURE 4.5 An irregular forcing function.

E X A M P L E  4 . 6
Steady-State Vibration of a Hydraulic Valve

Find the steady-state response of the valve in Example 4.4 if the pressure fluctuations in the chamber

are found to be periodic. The values of pressure measured at 0.01-second intervals in one cycle are

given below.

Time, 

(seconds)

ti 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12

(kN/m2)

pi = p(ti) 0 20 34 42 49 53 70 60 36 22 16 7 0

Solution: Since the pressure fluctuations on the valve are periodic, the Fourier analysis of the given

data of pressures in a cycle gives

(E.1)

(See Example 1.20.) Other quantities needed for the computation are

 r =
v

vn
= 0.5236

 vn = 100 rad/s

 v =
2p

t

=
2p

0.12
= 52.36 rad/s

 - 5833.3 cos 157.08t - 2333.3 sin 157.08t + Á  N/m2

 + 1416.7 cos 104.72t + 3608.3 sin 104.72t

 p(t) = 34083.3 - 26996.0 cos 52.36t + 8307.7 sin 52.36t
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The steady-state response of the valve can be expressed, using Eq. (E.9) of Example 4.3, as

*

4.4 Response Under a Nonperiodic Force
We have seen that periodic forces of any general waveform can be represented by Fourier

series as a superposition of harmonic components of various frequencies. The response of

a linear system is then found by superposing the harmonic response to each of the exciting

forces. When the exciting force F(t) is nonperiodic, such as that due to the blast from an

explosion, a different method of calculating the response is required. Various methods can

be used to find the response of the system to an arbitrary excitation. Some of these meth-

ods are as follows:

1. Representing the excitation by a Fourier integral.

2. Using the method of convolution integral.

-

(2333.3A/k)

2(1 - 9r2)2
+ (6zr)2

 sin(157.08t - f3)

-

(5833.3A/k)

2(1 - 9r2)2
+ (6zr)2

 cos(157.08t - f3)

+

(3608.3A/k)

2(1 - 4r2)2
+ (4zr)2

 sin(104.72t - f2)

+

(1416.7A/k)

2(1 - 4r2)2
+ (4zr)2

 cos(104.72t - f2)

+

(8309.7A/k)

2(1 - r2)2
+ (2zr)2

 sin(52.36t - f1)

xp(t) =
34083.3A

k
-

(26996.0A/k)

2(1 - r2)2
+ (2zr)2

 cos(52.36t - f1)

 f3 = tan-1 + 6zr

1 - 9r2
* = tan-1 +6 * 0.2 * 0.5236

1 - 9 * 0.52362
* = -23.18°

 f2 = tan-1 + 4zr

1 - 4r2
* = tan-1 +4 * 0.2 * 0.5236

1 - 4 * 0.52362
* = -77.01°

 f1 = tan-1 + 2zr

1 - r2
* = tan-1 +2 * 0.2 * 0.5236

1 - 0.52362
* = 16.1°

 A = 0.000625p m2

 z = 0.2
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3. Using the method of Laplace transforms.

4. Numerically integrating the equations of motion (numerical solution of differential

equations).

We shall discuss methods 2, 3 and 4 in the following sections. The numerical methods are

also considered in Chapter 11.

4.5 Convolution Integral
A nonperiodic exciting force usually has a magnitude that varies with time; it acts for a

specified period and then stops. The simplest form is the impulsive force a force that has

a large magnitude F and acts for a very short time From dynamics we know that

impulse can be measured by finding the change it causes in momentum of the system [4.2].

If and denote the velocities of the mass m before and after the application of the

impulse, we have

(4.12)

By designating the magnitude of the impulse by we can write, in general,

(4.13)

A unit impulse acting at is defined as

(4.14)

It can be seen that in order for F dt to have a finite value, F tends to infinity (since dt tends

to zero).

The unit impulse, acting at is also denoted by the Dirac delta function as

(4.15)

and the impulse of magnitude acting at is denoted as1

(4.16)F = F d(t)

t = 0,F,

f = f d(t) = d(t)

t = 0,f = 1,

f = lim
¢t:0

 L
t+¢t

t
F dt = F dt = 1

t = 0 (f
 

)

F = L
t+¢t

t
F dt

F,F¢t

Impulse = F¢t = mx
#
2 - mx

#
1

x
#
2x

#
1

¢t.

1The unit impulse, acting at is also denoted by the Dirac delta function, The Dirac delta function at

time denoted as has the properties

where Thus an impulse of magnitude acting at can be denoted as F(t) = F d(t - t)t = t,F,0 6 t 6 q .

 L
q

0
d(t - t) dt = 1, L

q

0
d(t - t)F(t) dt = F(t)

 d(t - t) = 0 for t Z t;

d(t - t),t = t,
d(t).t = 0,f,
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4.5.1
Response to 
an Impulse

We first consider the response of a single-degree-of-freedom system to an impulse excitation;

this case is important in studying the response under more general excitations. Consider a

viscously damped spring-mass system subjected to a unit impulse at as shown in

Figs. 4.6(a) and (b). For an underdamped system, the solution of the equation of motion

(4.17)

is given by Eq. (2.72) as

(4.18)

where

(4.19)

(4.20)

(4.21)

If the mass is at rest before the unit impulse is applied ( for or at ),

we obtain, from the impulse-momentum relation,

(4.22)

Thus the initial conditions are given by

(4.23)

(4.24) x
#
(t = 0) = x

#

0 =
1
m

 x(t = 0) = x0 = 0

Impulse = f = 1 = mx
#

 (t = 0) - mx
#

 (t = 0-
 ) = mx

#

0

t = 0-
 t 6 0x = x

#
= 0

 vn = A
k

m

 vd = vn21 - z2
= C

k

m
- ¢ c

2m

2

 z =
c

2mvn

x(t) =  e- 
zvnt

 bx0  cos vdt +
x
#

0 + zvnx0

vd
  sin vdt r

mx
$
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FIGURE 4.6 A single-degree-of-freedom system subjected to an impulse.
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In view of Eqs. (4.23) and (4.24), Eq. (4.18) reduces to

(4.25)

Equation (4.25) gives the response of a single-degree-of-freedom system to a unit impulse,

which is also known as the impulse response function, denoted by g(t). The function g(t),

Eq. (4.25), is shown in Fig. 4.6(c).

If the magnitude of the impulse is instead of unity, the initial velocity is and

the response of the system becomes

(4.26)

If the impulse is applied at an arbitrary time as shown in Fig. 4.7(a), it will change

the velocity at by an amount Assuming that until the impulse is applied,

the displacement x at any subsequent time t, caused by a change in the velocity at time is

given by Eq. (4.26) with t replaced by the time elapsed after the application of the impulse

that is, Thus we obtain

(4.27)

This is shown in Fig. 4.7(b).

x(t) = Fg(t - t)

t - t.

t,
x = 0F/m.t = t

t = t,F

x(t) =

Fe-
 
zvnt

mvd
 sin vdt = Fg(t)

F/mx
#

0F

x(t) = g(t) =

e-
 
zvnt

mvd
 sin vdt

F(t)

x(t)

F+t , F

Fg(t *t)

+t

F

O

t

O
t

(a)

(b)

t

t

FIGURE 4.7 Impulse response.
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2

F1
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F2

FIGURE 4.8 Structural testing using an impact hammer.

E X A M P L E  4 . 7
Response of a Structure Under Impact

In the vibration testing of a structure, an impact hammer with a load cell to measure the impact force is

used to cause excitation, as shown in Fig. 4.8(a). Assuming

and find the response of the system.

Solution: From the known data, we can compute

Assuming that the impact is given at we find (from Eq. (4.26)) the response of the system as

(E.1)

Note: The graph of Eq. (E.1) is shown in Example 4.33.

 =
20

(5) (19.975)
 e-    

0.05(20)t sin 19.975 t = 0.20025 e-  

t sin 19.975 t  m

 x1(t) = F  
e- zvn t

mvd
 sin vd t

t = 0,

 vd = 21 - z2
 vn = 19.975 rad/s

 vn = A
k

m
= A

2000

5
= 20 rad/s,              z =

c

cc
=

c

22km
=

10

222000(5)
= 0.05

F = 20 N-s,
m = 5 kg, k = 2000 N>m,  c = 10 N-s>m, 

*
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E X A M P L E  4 . 8
Response of a Structure Under Double Impact

In many cases, providing only one impact to the structure using an impact hammer is difficult. Some-

times a second impact takes place after the first, as shown in Fig. 4.8(b), and the applied force, F(t),

can be expressed as

where is the Dirac delta function and indicates the time between the two impacts of magnitudes

and For a structure with and 

N, find the response of the structure.

Solution: From the known data, we find (see the solution for Example 4.7), 

and The response due to the impulse is given by Eq. (E.1) of Example 4.7,

while the response due to the impulse can be determined from Eqs. (4.27) and (4.26) as

(E.1)

For Eq. (E.1) becomes

(E.2)

Using the superposition of the two responses and the response due to two impacts, in

meters, can be expressed as

(E.3)

Note: The graph of Eq. (E.3) is shown in Example 4.33.

*

x(t) = b0.20025 e- 
t sin 19.975 t; 0 t 0.2

0.20025 e- 
t sin 19.975 t + 0.100125 e- 

(t-0.2) sin 19.975(t - 0.2); t 7 0.2
r

x2(t),x1(t)

 = 0.100125e-(t-0.2) sin 19.975(t - 0.2);           t 7 0.2

 x2(t) =
10

(5) (19.975)
 e- 

0.05 (20)(t-0.2) sin 19.975(t - 0.2)

t = 0.2,

x2(t) = F2 
e-  

zvn(t-t)

mvd
 sin vd (t - t)

F2 d(t - 0.2)
F1 d(t)vd = 19.975 rad/s.

z = 0.05,vn = 20 rad/s

10 d(t - 0.2)
F(t) = 20 d(t) +m = 5 kg, k = 2000 N/m, c = 10 N-s/mF2.F1

td(t)

F(t) = F1 d(t) + F2 d(t - t)

4.5.2
Response to a
General Forcing
Condition

Now we consider the response of the system under an arbitrary external force F(t), shown

in Fig. 4.9. This force may be assumed to be made up of a series of impulses of varying

magnitude. Assuming that at time the force acts on the system for a short period of

time the impulse acting at is given by At any time t, the elapsed time

since the impulse is so the response of the system at t due to this impulse alone is

given by Eq. (4.27) with 

(4.28)

The total response at time t can be found by summing all the responses due to the elementary

impulses acting at all times :

(4.29)x(t) M a   F(t)g(t - t) ¢t

t

¢x(t) = F(t) ¢  t g(t - t)

F = F(t) ¢t:
t - t,

F(t) ¢t.t = t¢t,
F(t)t,
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Letting and replacing the summation by integration, we obtain

(4.30)

By substituting Eq. (4.25) into Eq. (4.30), we obtain

(4.31)

which represents the response of an underdamped single-degree-of-freedom system to the

arbitrary excitation F(t). Note that Eq. (4.31) does not consider the effect of initial conditions

of the system, because the mass is assumed to be at rest before the application of the impulse,

as implied by Eqs. (4.25) and (4.28). The integral in Eq. (4.30) or Eq. (4.31) is called the

convolution or Duhamel integral. In many cases the function F(t) has a form that permits an

explicit integration of Eq. (4.31). If such integration is not possible, we can evaluate numeri-

cally without much difficulty, as illustrated in Section 4.9 and in Chapter 11. An elemen-

tary discussion of the Duhamel integral in vibration analysis is given in reference [4.6].

x(t) =
1

mvdL
t

0
F(t) e- 

zvn(t-t) sin vd (t - t) dt

x(t) = L
t

0
F(t)g(t - t) dt

¢t: 0

4.5.3
Response to
Base Excitation

If a spring-mass-damper system is subjected to an arbitrary base excitation described by its

displacement, velocity, or acceleration, the equation of motion can be expressed in terms

of the relative displacement of the mass as follows (see Section 3.6.2):

(4.32)

This is similar to the equation

(4.33)

with the variable z replacing x and the term replacing the forcing function F. Hence all

of the results derived for the force-excited system are applicable to the base-excited system

-my
$

mx
$
+ cx

#
+ kx = F

mz
$
+ cz

#
+ kz = -my

$

z = x - y

F(t)

O t
t

F(t)

t

t  tt

FIGURE 4.9 An arbitrary (nonperiodic)

forcing function.
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Material
being compacted

Platform

(a)

(d)

(b)

Cylinder

m

x(t)

c

F(t)

F0

O t

F(t)

Piston

(c)

O t

x(t)

F0

k

2F0

k

O
t

x(t)

F0

k

2F0

k

k

2
k

2

FIGURE 4.10 Step force applied to a compacting machine.

E X A M P L E  4 . 9
Step Force on a Compacting Machine

A compacting machine, modeled as a single-degree-of-freedom system, is shown in Fig. 4.10(a).

The force acting on the mass m (m includes the masses of the piston, the platform, and the material

being compacted) due to a sudden application of the pressure can be idealized as a step force, as

shown in Fig. 4.10(b). Determine the response of the system.

also for z when the term F is replaced by For an underdamped system subjected to

base excitation, the relative displacement can be found from Eq. (4.31):

(4.34)z(t) = -  

1

vdL
t

0
y
$

(t)e-  

zvn(t-t) sin vd(t - t) dt

-my
$

.
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O t

F(t)

F0

t0

FIGURE 4.11 Step force applied with a

time delay.

Solution: Since the compacting machine is modeled as a mass-spring-damper system, the problem

is to find the response of a damped single-degree-of-freedom system subjected to a step force. By

noting that we can write Eq. (4.31) as

(E.1)

where

(E.2)

This response is shown in Fig. 4.10(c). If the system is undamped ( and ), Eq. (E.1)

reduces to

(E.3)

Equation (E.3) is shown graphically in Fig. 4.10(d). It can be seen that if the load is instantaneously

applied to an undamped system, a maximum displacement of twice the static displacement will be

attained that is, 

*

xmax = 2F0/k.

x(t) =
F0

k
 [1 -  cos vnt]

vd = vnz = 0

f = tan-1 ¢ z

21 - z2

 =
F0

k
 B1 -

1

21 - z2
#  e- 

zvnt cos(vdt - f)R

 =
F0

mvd
 B  e- 

zvn(t-t) b zvn sin vd(t - t) + vd cos vd(t - t)

(zvn)2
+ (vd)2

r R
t=0

t

 x(t) =
F0

mvdL
t

0
 e- 

zvn (t-t) sin vd(t - t) dt

F(t) = F0,

E X A M P L E  4 . 1 0
Time-Delayed Step Force

Find the response of the compacting machine shown in Fig. 4.10(a) when it is subjected to the force

shown in Fig. 4.11.
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Solution: Since the forcing function starts at instead of at the response can be obtained

from Eq. (E.1) of Example 4.9 by replacing t by This gives

(E.1)

If the system is undamped, Eq. (E.1) reduces to

(E.2)

*

x(t) =
F0

k
 [1 -  cos vn(t - t0)]

x(t) =
F0

k21 - z2
 B21 - z2

-  e- 
zvn(t- t0) cos5vd(t - t0) - f6R

t - t0.
t = 0,t = t0

E X A M P L E  4 . 1 1
Rectangular Pulse Load

If the compacting machine shown in Fig. 4.10(a) is subjected to a constant force only during the time

(Fig. 4.12a), determine the response of the machine.

Solution: The given forcing function, F(t), can be considered as the sum of a step function of

magnitude beginning at and a second step function of magnitude starting at

time as shown in Fig. 4.12(b).

Thus the response of the system can be obtained by subtracting Eq. (E.1) of Example 4.10 from

Eq. (E.1) of Example 4.9. This gives

(E.1)

with

(E.2)

To see the vibration response graphically, we consider the system as undamped, so that Eq. (E.1)

reduces to

(E.3)

The response is shown in Fig. 4.12(c) for two different pulse widths of for the following data

(Problem 4.90): and The responses will

be different for the two cases and where is the undamped natural time

period of the system. If the peak will be larger and occur during the forced-vibration era

(that is, during 0 to ) while the peak will be smaller and occur in the residual-vibration era (that is,

after ) if In Fig. 4.12(c), and the peak corresponding to is

about six times larger than the one with t0 = 0.1 s.
t0 = 1.5 stn = 1.8138 st0 7 tn/2.t0

t0

t0 7 tn/2,
tnt0 7 tn/2,t0 7 tn/2
F0 = 100 N.m = 100 kg, c = 50 N-s/m, k = 1200 N/m,

t0

x(t) =
F0

k
 Bcos vn(t - t0) -  cos vntR

f = tan-1 ¢ z

21 - z2

x(t) =
F0e- 

zvnt

k21 - z2
 B -  cos (vdt - f) + ezvnt0 cos5vd(t - t0) - f6R

t = t0,
-F0F2(t)t = 0+F0

F1(t)

0 t t0
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FIGURE 4.12 Response due to a pulse load.
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E X A M P L E  4 . 1 2
Compacting Machine Under Linear Force

Determine the response of the compacting machine shown in Fig. 4.13(a) when a linearly varying

force (shown in Fig. 4.13(b)) is applied due to the motion of the cam.

Solution: The linearly varying force shown in Fig. 4.13(b) is known as the ramp function. This

forcing function can be represented as where denotes the rate of increase of the

force F per unit time. By substituting this into Eq. (4.31), we obtain

 x(t) =

dF

mvdL
t

0
te-

 
zvn(t-t) sin vd(t - t) dt

dFF(t) = dF # t,
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k/2k/2
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x(t)

(a)

(b)

1
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t

dF

O

(c)

1

F(t)

t
O

dF

k

2p
vn

4p
vn

6p
vn

FIGURE 4.13 Compacting machine subjected to a linear

force.
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FIGURE 4.14 Building frame subjected to a blast load.

These integrals can be evaluated and the response expressed as follows:

(E.1)

(See Problem 4.28.) For an undamped system, Eq. (E.1) reduces to

(E.2)

Figure 4.13(c) shows the response given by Eq. (E.2).

*

x(t) =
dF

vnk
 [vnt -  sin vnt]

x(t) =
dF

k
 B t -

2z

vn
+  e- 

zvnt ¢ 2z

vn
 cos vdt - b vd

2
- z2vn

2

vn
2vd

r  sin vdt R

 -
dF # t

mvd L
t

0
 e- 

zvn(t-t) sin vd(t - t) (-dt)

 =
dF

mvdL
t

0
(t - t)e- 

zvn(t-t) sin vd(t - t) (-dt)

E X A M P L E  4 . 1 3
Blast Load on a Building Frame

A building frame is modeled as an undamped single-degree-of-freedom system (Fig. 4.14(a)). Find

the response of the frame if it is subjected to a blast loading represented by the triangular pulse

shown in Fig. 4.14(b).

Solution: The forcing function is given by

(E.1)

(E.2) F(t) = 0                       for t 7 t0

 F(t) = F0 ¢1 -
t

t0
          for 0 t t0
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Equation (4.31) gives, for an undamped system,

(E.3)

Response during Using Eq. (E.1) for in Eq. (E.3) gives

(E.4)

By noting that integration by parts gives

(E.5)

and

(E.6)

Eq. (E.4) can be written as

(E.7)

Simplifying this expression, we obtain

(E.8)

Response during Here also we use Eq. (E.1) for but the upper limit of integration in

Eq. (E.3) will be since for Thus the response can be found from Eq. (E.7) by

setting within the square brackets. This results in

(E.9)

*

x(t) =
F0

kvnt0
 B(1 -  cos vnt0) sin vnt - (vnt0 -  sin vnt0) cos vntR

t = t0

t 7 t0.F(t) = 0t0,
F(t),t 7 t0:

x(t) =
F0

k
 B1 -

t

t0
-  cos vnt +

1

vnt0
 sin vntR

 - cos vnt B -  cos vnt + 1 +
t

t0
 cos vnt -

1

vnt0
 sin vntR r

 x(t) =
F0

k
 b sin vnt  B  sin vnt -

t

t0
 sin vnt -

1

vnt0
 cos vnt +

1

vnt0
R

Lt sin vnt
# d(vnt) = -   t cos vnt +

1

vn
 sin vnt

Lt cos vnt
# d(vnt) = t sin vnt +

1

vn
 cos vnt

 -
F0

k
 cos vntL

t

0
¢1 -

t

t0
 sin vnt

# d(vnt)

 =
F0

k
 sin vntL

t

0
 ¢1 -

t

t0
 cos vnt

# d(vnt)

 x(t) =
F0

mvn
2L

t

0
 ¢1 -

t

t0
 [sin vnt cos vnt -  cos vnt sin vnt] d(vnt)

F(t)0 t t0:

x(t) =
1

mvnL
t

0
F(t) sin vn(t - t) dt



Daniel Bernoulli (1700 1782) was a Swiss who became a professor of mathemat-
ics at Saint Petersburg in 1725 after receiving his doctorate in medicine for his the-
sis on the action of lungs. He later became professor of anatomy and botany at
Basel. He developed the theory of hydrostatics and hydrodynamics, and Bernoulli s
theorem  is well known to engineers. He derived the equation of motion for the
vibration of beams (the Euler-Bernoulli theory) and studied the problem of vibrat-
ing strings. Bernoulli was the first person to propose the principle of superposition
of harmonics in free vibration.
(A photo of a portrait courtesy of David Eugene Smith, History of Mathematics,
Volume 1 General Survey of the History of Elementary Mathematics. Dover
Publications, New York, 1958.)
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This chapter deals with two-degree-of-freedom systems, which require two independent

coordinates to describe their motion. The coupled equations of motion of the system are

derived using Newton s second law of motion. By expressing these equations in matrix
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harmonic motion of the two masses, the eigenvalues or natural frequencies of vibration,

the modal vectors, and the free-vibration solution of the undamped system are found. The

method of incorporating the initial conditions is also outlined. The two-degrees-of-freedom

torsional systems are considered in an analogous manner. The concepts of coordinate cou-

pling, generalized coordinates, and principal coordinates are introduced with examples.

The forced-vibration analysis of the system under the complex form of harmonic force is

presented and the impedance matrix is identified. The semidefinite, unrestricted, or degen-

erate systems are introduced along with a method of finding their natural frequencies of

vibration. The self-excitation and stability analysis of two-degrees-of-freedom systems are

considered along with a derivation of the conditions of stability. The Routh-Hurwitz crite-

rion, which can be used for deriving the conditions of stability of any n-degree-of-freedom

system, is also introduced. The transfer-function approach, the computation of the

response of two-degree-of-freedom systems using Laplace transform, and solutions using

frequency transfer functions are also presented. Finally, the free- and forced-vibration solu-

tions of two-degree-of-freedom systems using MATLAB are illustrated with examples.

Learning Objectives

After completing this chapter, you should be able to do the following:

* Formulate the equations of motion of two-degree-of-freedom systems.

* Identify the mass, damping, and stiffness matrices from the equations of motion.

* Compute the eigenvalues or natural frequencies of vibration and the modal vectors.

* Determine the free-vibration solution using the known initial conditions.

* Understand the concepts of coordinate coupling and principal coordinates.

* Determine the forced-vibration solutions under harmonic forces.

* Understand the concepts of self-excitation and stability of the system.

* Use the Laplace transform approach for solution of two-degree-of-freedom systems.

* Solve two-degree-of-freedom free- and forced-vibration problems using MATLAB.

5.1 Introduction

Systems that require two independent coordinates to describe their motion are called two-

degree-of-freedom systems. Some examples of systems having two degrees of freedom

were shown in Fig. 1.12. We shall consider only two-degree-of-freedom systems in this

chapter, so as to provide a simple introduction to the behavior of systems with an arbitrar-

ily large number of degrees of freedom, which is the subject of Chapter 6.

Consider a simplified model of a lathe shown in Fig. 5.1(a), in which the lathe bed,

represented as an elastic beam, is supported on short elastic columns with the headstock

and tailstock denoted as lumped masses attached to the beam [5.1 5.3]. For a simplified

vibration analysis, the lathe can be treated as a rigid body of total mass m and mass

moment of inertia about its center of gravity (C.G.), resting on springs of stiffness 

and as shown in Fig. 5.1(b). The displacement of the system at any time can be specified

by a linear coordinate x(t), indicating the vertical displacement of the C.G. of the mass,

k2,

k1J0
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and an angular coordinate denoting the rotation of the mass m about its C.G. Instead

of x(t) and we can also use and the displacements of points A and B, as

independent coordinates to specify the motion of the system. Thus the system has two

degrees of freedom. It is important to note that in this case the mass m is treated not as a

point mass but as a rigid body having two possible types of motion. (If it is a particle, there

is no need to specify the rotation of the mass about its C.G.)

Similarly, consider the automobile shown in Fig. 5.2(a). For the vibration of the auto-

mobile in the vertical plane, a two-degree-of-freedom model shown in Fig. 5.2(b) can be

used. Here the body is idealized as a bar of mass m and mass moment of inertia sup-

ported on the rear and front wheels (suspensions) of stiffness and The displacement

of the automobile at any time can be specified by the linear coordinate x(t) denoting the

vertical displacement of the C.G. of the body and the angular coordinate indicating the

rotation (pitching) of the body about its C.G. Alternately, the motion of the automobile can

be specified using the independent coordinates, and of points A and B.

Next, consider the motion of a multistory building under an earthquake. For simplic-

ity, a two-degree-of-freedom model can be used as shown in Fig. 5.3. Here the building is

modeled as a rigid bar having a mass m and mass moment of inertia The resistance

offered to the motion of the building by the foundation and surrounding soil is approxi-

mated by a linear spring on stiffness k and a torsional spring of stiffness The displace-

ment of the building at any time can be specified by the horizontal motion of the base x(t)

and the angular motion about the point O. Finally, consider the system shown in Fig.

5.4(a), which illustrates the packaging of an instrument of mass m. Assuming that the

motion of the instrument is confined to the xy-plane, the system can be modeled as a mass

u(t)

k t.

J0.

x2(t),x1(t)

u(t)

k2.k1

J0,

x2(t),x1(t)u(t),
u(t),

k1 k2
l1

A B

C.G.

l2

m, J0

Bed

(a)

(b)

Headstock TailstockLive center Dead center

FIGURE 5.1 Lathe.
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FIGURE 5.2 Automobile.

m supported by springs in the x and y directions, as indicated in Fig. 5.4(b). Thus the sys-

tem has one point mass m and two degrees of freedom, because the mass has two possible

types of motion (translations along the x and y directions). The general rule for the compu-

tation of the number of degrees of freedom can be stated as follows:

There are two equations of motion for a two-degree-of-freedom system, one for each mass

(more precisely, for each degree of freedom). They are generally in the form of coupled

differential equations that is, each equation involves all the coordinates. If a harmonic

solution is assumed for each coordinate, the equations of motion lead to a frequency equa-

tion that gives two natural frequencies for the system. If we give suitable initial excitation,

the system vibrates at one of these natural frequencies. During free vibration at one of the

natural frequencies, the amplitudes of the two degrees of freedom (coordinates) are related

in a specific manner and the configuration is called a normal mode, principal mode, or

Number of Number of masses in the system

degrees of freedom = * number of possible types

of the system of motion of each mass
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(a) (b)

m

x(t)
y(t)

k2

k1

Instrument
(mass m)

Packaging
(cushioning)

material

FIGURE 5.4 Packaging of an instrument.

natural mode of vibration. Thus a two-degree-of-freedom system has two normal modes of

vibration corresponding to the two natural frequencies.

If we give an arbitrary initial excitation to the system, the resulting free vibration will

be a superposition of the two normal modes of vibration. However, if the system vibrates

under the action of an external harmonic force, the resulting forced harmonic vibration

takes place at the frequency of the applied force. Under harmonic excitation, resonance

Building
(mass: m,
mass moment of
inertia: J0)

kk

u(t)

kt

O

x(t)

FIGURE 5.3 Multistory building subjected to an earthquake.
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m1

m1

m2

x1(t)

f1(t)

x1, x
..

1

F1

m2

x2, x
..

2

F2

k2

x2(t)

f2(t) k3k1

(a)

k1x1 k2(x2  x1)

c2(x
.
2  x

.
1)c1x

.
1

k3x2

c3x
.
2

Spring k2 under tension
for +(x2  x1)

Spring k1 under tension
for +x1

Spring k3 under
compression for +x2

(b)

c1 c2 c3

FIGURE 5.5 A two-degree-of-freedom spring-mass-damper system.

occurs (i.e., the amplitudes of the two coordinates will be maximum) when the forcing fre-

quency is equal to one of the natural frequencies of the system.

As is evident from the systems shown in Figs. 5.1 5.4, the configuration of a system

can be specified by a set of independent coordinates such as length, angle, or some other

physical parameters. Any such set of coordinates is called generalized coordinates.

Although the equations of motion of a two-degree-of-freedom system are generally cou-

pled so that each equation involves all the coordinates, it is always possible to find a par-

ticular set of coordinates such that each equation of motion contains only one coordinate.

The equations of motion are then uncoupled and can be solved independently of each

other. Such a set of coordinates, which leads to an uncoupled system of equations, is called

principal coordinates.

5.2 Equations of Motion for Forced Vibration
Consider a viscously damped two-degree-of-freedom spring-mass system, shown in Fig.

5.5(a). The motion of the system is completely described by the coordinates and 

which define the positions of the masses and at any time t from the respective equilib-

rium positions. The external forces and act on the masses and respectively.

The free-body diagrams of the masses and are shown in Fig. 5.5(b). The application of

Newton s second law of motion to each of the masses gives the equations of motion:

(5.1)

(5.2)

It can be seen that Eq. (5.1) contains terms involving (namely, and ),

whereas Eq. (5.2) contains terms involving (namely, and ). Hence they-k2x1-c2x
#

1x1

-k2x2-c2x 
#

2x2

 m2x 
$

2 - c2x 
#

1 + (c2 + c3)x 
#

2 - k2x1 + (k2 + k3)x2 = f2

 m1x 
$

1 + (c1 + c2)x 
#

1 - c2 x 
#

2 + (k1 + k2)x1 - k2x2 = f1

m2m1

m2,m1F2(t)F1(t)
m2m1

x2(t),x1(t)
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represent a system of two coupled second-order differential equations. We can therefore

expect that the motion of the mass will influence the motion of the mass and vice

versa. Equations (5.1) and (5.2) can be written in matrix form as

(5.3)

where [m], [c], and [k] are called the mass, damping, and stiffness matrices, respectively,

and are given by

and and are called the displacement and force vectors, respectively, and are

given by

and

It can be seen that [m], [c], and [k] are all matrices whose elements are the known

masses, damping coefficients, and stiffnesses of the system, respectively. Further, these

matrices can be seen to be symmetric, so that

where the superscript T denotes the transpose of the matrix.

Notice that the equations of motion (5.1) and (5.2) become uncoupled (independent of

one another) only when which implies that the two masses and are

not physically connected. In such a case, the matrices [m], [c], and [k] become diagonal.

The solution of the equations of motion (5.1) and (5.2) for any arbitrary forces and

is difficult to obtain, mainly due to the coupling of the variables and The

solution of Eqs. (5.1) and (5.2) involves four constants of integration (two for each equa-

tion). Usually the initial displacements and velocities of the two masses are specified as

and 

We shall first consider the free-vibration solution of Eqs. (5.1) and (5.2).

x 
#
2(t = 0) = x 

#
2(0).x1(t = 0) = x1(0), x 

#
1(t = 0) = x 

#
1(0), x2(t = 0) = x2(0),

x2(t).x1(t)f2(t)
f1(t)

m2m1c2 = k2 = 0,

[m]T
= [m],  [c]T

= [c],  [k]T
= [k]

2 * 2

f
:

(t) = b f1(t)

f2(t)
r

x
:

(t) = b x1(t)

x2(t)
r

f
!
(t)x

:

(t)

 [k] = Bk1 + k2 -  k2

-  k2 k2 + k3
R

 [c] = Bc1 + c2 -  c2

-  c2 c2 + c3
R

 [m] = Bm1 0

0 m2
R

[m] x
$
:

(t) + [c] x
#
:

(t) + [k] x:(t) = f
!
(t)

m2,m1
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5.3 Free-Vibration Analysis of an Undamped System
For the free-vibration analysis of the system shown in Fig. 5.5(a), we set 

Further, if damping is disregarded, and the equations of motion (5.1)

and (5.2) reduce to

(5.4)

(5.5)

We are interested in knowing whether and can oscillate harmonically with the same

frequency and phase angle but with different amplitudes. Assuming that it is possible to

have harmonic motion of and at the same frequency and the same phase angle 

we take the solutions of Eqs. (5.4) and (5.5) as

(5.6)

where and are constants that denote the maximum amplitudes of and 

and is the phase angle. Substituting Eq. (5.6) into Eqs. (5.4) and (5.5), we obtain

(5.7)

Since Eq. (5.7) must be satisfied for all values of the time t, the terms between brackets

must be zero. This yields

(5.8)

which represent two simultaneous homogenous algebraic equations in the unknowns 

and It can be seen that Eq. (5.8) is satisfied by the trivial solution which

implies that there is no vibration. For a nontrivial solution of and the determinant of

the coefficients of and must be zero:

or

(5.9) + 5(k1 + k2)(k2 + k3) - k2
26 = 0

 (m1m2)v4
- 5(k1 + k2)m2 + (k2 + k3)m16v

2

det B5-m1v
2
+ (k1 + k2)6 -k2 -k2 5-m2v

2
+ (k2 + k3)6

R = 0

X2X1

X2,X1

X1 = X2 = 0,X2.
X1

 -k2X1 + 5-m2v
2
+ (k2 + k3)6X2 = 0

 5-m1v
2
+ (k1 + k2)6X1 - k2X2 = 0

 [-k2X1 + 5-m2v
2
+ (k2 + k3)6X2] cos(vt + f) = 0

 [5-m1v
2
+ (k1 + k2)6X1 - k2X2] cos(vt + f) = 0

f

x2(t),x1(t)X2X1

 x2(t) = X2 cos(vt + f)

 x1(t) = X1 cos(vt + f)

f,vm2m1

m2m1

 m2x
$

2(t) - k2x1(t) + (k2 + k3)x2(t) = 0

 m1x
$

1(t) + (k1 + k2)x1(t) - k2x2(t) = 0

c1 = c2 = c3 = 0,
f1(t) = f2(t) = 0.
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Equation (5.9) is called the frequency or characteristic equation because its solution

yields the frequencies or the characteristic values of the system. The roots of Eq. (5.9)

are given by

(5.10)

This shows that it is possible for the system to have a nontrivial harmonic solution of the

form of Eq. (5.6) when is equal to and given by Eq. (5.10). We call and the

natural frequencies of the system.

The values of and remain to be determined. These values depend on the natural

frequencies and We shall denote the values of and corresponding to as 

and and those corresponding to as and Further, since Eq. (5.8) is 

homogenous, only the ratios and can be found. For 

and Eq. (5.8) gives

(5.11)

Notice that the two ratios given for each in Eq. (5.11) are identical. The normal 

modes of vibration corresponding to and can be expressed, respectively, as

and

(5.12)

The vectors and which denote the normal modes of vibration, are known as the

modal vectors of the system. The free-vibration solution or the motion in time can be

expressed, using Eq. (5.6), as

X
!
(2),X

!
(1)

X
!
(2)

= bX1
(2)

X2
(2) r = b X1

(2)

r2X1
(2) r

X
!
(1)

= bX1
(1)

X2
(1) r = b X1

(1)

r1X1
(1) r

v2
2

v1
2

ri (i = 1, 2)

 r2 =
X2

(2)

X1
(2)

=
-m1v2

2
+ (k1 + k2)

k2
=

k2

-m2v2
2
+ (k2 + k3)

 r1 =
X2

(1)

X1
(1)

=
-m1v1

2
+ (k1 + k2)

k2
=

k2

-m2v1
2
+ (k2 + k3)

v
2
= v2

2,v
2
= v1

2

r2 = 5X2
(2)/X1

(2)6r1 = 5X2
(1)/X1

(1)6

X2
(2).X1

(2)
v2X2

(1)X1
(1)

v1X2X1v2.v1

X2X1

v2v1v2v1v

- 4b (k1 + k2)(k2 + k3) - k2
2

m1m2
r R 1/2

*
1

2
 B b (k1 + k2)m2 + (k2 + k3)m1

m1m2
r2

v1
2, v2

2
=

1

2
 b (k1 + k2)m2 + (k2 + k3)m1

m1m2
r
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(5.13)

where the constants and are determined by the initial conditions.f2X1
(1), X1

(2), f1,

 x
!
(2)(t) = bx1

(2)(t)

x2
(2)(t)

r = b X1
(2) cos(v2t + f2)

r2X1
(2) cos(v2t + f2)

r = second mode

 x
!
(1)(t) = bx1

(1)(t)

x2
(1)(t)

r = b X1
(1) cos(v1t + f1)

r1X1
(1) cos(v1t + f1)

r = first mode

Initial Conditions. As stated earlier, each of the two equations of motion, Eqs. (5.1) and

(5.2), involves second-order time derivatives; hence we need to specify two initial

conditions for each mass. As stated in Section 5.1, the system can be made to vibrate in its

ith normal mode by subjecting it to the specific initial conditions

However, for any other general initial conditions, both modes will be excited. The resulting

motion, which is given by the general solution of Eqs. (5.4) and (5.5), can be obtained by a

linear superposition of the two normal modes, Eq. (5.13):

(5.14)

where and are constants. Since and already involve the unknown constants 

and (see Eq. (5.13)), we can choose with no loss of generality. Thus the 

components of the vector can be expressed, using Eq. (5.14) with and

Eq. (5.13), as

(5.15)

where the unknown constants and can be determined from the initial

conditions:

(5.16)

Substitution of Eq. (5.16) into Eq. (5.15) leads to

 x 
#
1(0) = -  v1X1

(1) sin f1 - v2X1
(2) sin f2

 x1(0) = X1
(1) cos f1 + X1

(2) cos f2

 x2(t = 0) = x2(0),  x 
#
2(t = 0) = x 

#
2(0)

 x1(t = 0) = x1(0),  x 
#
1(t = 0) = x 

#
1(0), 

f2X1
(1), X1

(2), f1,

 = r1X1
(1) cos(v1t + f1) + r2X1

(2) cos(v2t + f2)

 x2(t) = x2
(1)(t) + x2

(2)(t)

 x1(t) = x1
(1)(t) + x1

(2)(t) = X1
(1) cos(v1t + f1) + X1

(2) cos(v2t + f2)

c1 = c2 = 1x
!
(t)

c1 = c2 = 1X1
(2)X1

(1)

x
!
(2)(t)x

!
(1)(t)c2c1

x
:

(t) = c1 x
:(1)(t) + c2 x

:(2)(t)

 x2(t = 0) = riX1
(i),        x #

2(t = 0) = 0

 x1(t = 0) = X1
(i)

= some constant,  x 
#
1(t = 0) = 0, 

(i = 1, 2)
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(5.17)

Equation (5.17) can be regarded as four algebraic equations in the unknowns

and The solution of Eq. (5.17) can be

expressed as

from which we obtain the desired solution:

(5.18) f2 = tan-1b X1
(2) sin f2

X1
(2) cos f2

r = tan-1b r1x
#

1(0) - x
#

2(0)

v2[-  r1x1(0) + x2(0)]
r

 f1 = tan-1b X1
(1) sin f1

X1
(1) cos f1

r = tan-1b -  r2x
#

1(0) + x
#

2(0)

v1[r2x1(0) - x2(0)]
r

 =
1

(r2 - r1)
 B5-  r1x1(0) + x2(0)62

+

5r1x
#

1(0) - x
#

2(0)62

v2
2

R 1/2

 X1
(2)

= [5X1
(2) cos f26

2
+ 5X1

(2) sin f26
2]1/2

 =
1

(r2 - r1)
 B5r2x1(0) - x2(0)62

+

5-  r2x
#

1(0) + x
#

2(0)62

v1
2

R 1/2

 X1
(1)

= [5X1
(1) cos f16

2
+ 5X1

(1) sin f16
2]1/2

 X1
(1) sin f1 = b -  r2x 

#

1(0) + x 
#

2(0)

v1(r2 - r1)
r ,    X1

(2) sin f2 = b r1x
 #

1(0) - x 
#

2(0)

v2(r2 - r1)
r

 X1
(1) cos f1 = b r2x1(0) - x2(0)

r2 - r1
r ,   X1

(2) cos f2 = b -  r1x1(0) + x2(0)

r2 - r1
r

X1
(2) sin f2.X1

(1) cos f1, X1
(2) cos f2, X1

(1) sin f1,

 x 
#

2(0) = -  v1r1X1
(1) sin f1 - v2r2X1

(2) sin f2

 x2(0) = r1X1
(1) cos f1 + r2X1

(2) cos f2

Frequencies of Spring-Mass System

Find the natural frequencies and mode shapes of a spring-mass system, shown in Fig. 5.6, which is

constrained to move in the vertical direction only. Take 

Solution: If we measure and from the static equilibrium positions of the masses and 

respectively, the equations of motion and the solution obtained for the system of Fig. 5.5(a) are also

applicable to this case if we substitute and Thus the equations of

motion, Eqs. (5.4) and (5.5), are given by

(E.1) mx
$

2 - kx1 + 2kx2 = 0

 mx
$

1 + 2kx1 - kx2 = 0

k1 = k2 = k3 = k.m1 = m2 = m

m2,m1x2x1

n = 1.

E X A M P L E  5 . 1



x1(t)

x2(t)

k1 = k

k2 = nk

m2 = m

m1 = m

k3 = k

FIGURE 5.6 Two-degree-

of-freedom system.

By assuming harmonic solution as

(E.2)

the frequency equation can be obtained by substituting Eq. (E.2) into Eq. (E.1):

or

(E.3)

The solution of Eq. (E.3) gives the natural frequencies

(E.4)

(E.5)

From Eq. (5.11), the amplitude ratios are given by

(E.6)

(E.7) r2 =
X2

(2)

X1
(2)

=
-  mv2

2
+ 2k

k
=

k

-  mv2
2
+ 2k

= -  1

 r1 =
X2

(1)

X1
(1)

=
-  mv1

2
+ 2k

k
=

k

-  mv1
2
+ 2k

= 1

 v2 = b 4km + [16k2m2
- 12m2k2]1/2

2m2
r 1/2

= A
3k

m

 v1 = b 4km - [16k2m2
- 12m2k2]1/2

2m2
r1/2

= A
k

m

m2v4
- 4kmv2

+ 3k2
= 0

` (-  mv2
+ 2k)  (-  k)

 (-  k) (-  mv2
+ 2k)

` = 0

xi(t) = Xi cos(vt + f); i = 1, 2
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The natural modes are given by Eq. (5.13):

(E.8)

(E.9)

It can be seen from Eq. (E.8) that when the system vibrates in its first mode, the amplitudes of the

two masses remain the same. This implies that the length of the middle spring remains constant.

Thus the motions of and are in phase (see Fig. 5.7(a)). When the system vibrates in its second

mode, Eq. (E.9) shows that the displacements of the two masses have the same magnitude with oppo-

site signs. Thus the motions of and are 180° out of phase (see Fig. 5.7(b)). In this case the mid-

point of the middle spring remains stationary for all time t. Such a point is called a node. Using Eq.

(5.15), the motion (general solution) of the system can be expressed as

(E.10) x2(t) = X1
(1) cos¢A k

m
 t + f1

 

-
 
X1

(2) cos¢A3k

m
 t + f2

 x1(t) = X1
(1) cos¢A k

m
 t + f1 + X1

(2) cos¢A3k

m
 t + f2

m2m1

m2m1

 Second mode = x
!
(2) (t) = e    X1

(2) cos¢A3k

m
 t + f2

-X1
(2) cos¢A3k

m
 t + f2

u
 First mode = x

!
(1) (t) = e X1

(1) cos¢A k

m
 t + f1

X1
(1) cos¢A k

m
 t + f1

u

m1

m2

m1

m2

m1 m2

(a) First mode (b) Second mode

m1

m2
Node

Node

FIGURE 5.7 Modes of vibration.
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Note: It can be seen that the computation of the natural frequencies and mode shapes is

lengthy and tedious. Computer programs can be used conveniently for the numerical com-

putation of the natural frequencies and mode shapes of multidegree-of-freedom systems

(see Section 5.12).

Initial Conditions to Excite Specific Mode

Find the initial conditions that need to be applied to the system shown in Fig. 5.6 so as to make it

vibrate in (a) the first mode, and (b) the second mode.

Solution:

Approach: Specify the solution to be obtained for the first or second mode from the general solution

for arbitrary initial conditions and solve the resulting equations.

For arbitrary initial conditions, the motion of the masses is described by Eq. (5.15). In the pre-

sent case, and so Eq. (5.15) reduces to Eq. (E.10) of Example 5.1:

(E.1)

Assuming the initial conditions as in Eq. (5.16), the constants and can be obtained

from Eq. (5.18), using and 

(E.2)

(E.3)

(E.4)

(E.5)

a. The first normal mode of the system is given by Eq. (E.8) of Example 5.1:

(E.6)x
!
(1)(t) = e X1

(1) cos¢A k

m
 t + f1

X1
(1) cos¢A k

m
 t + f1

u
 f2 = tan-1b 2m [x

#
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#
2(0)]

23k [-x1(0) + x2(0)]
r

 f1 = tan-1 b -2m [x 
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#
2(0)]

2k [x1(0) + x2(0)]
r

 X1
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= -  

1

2
 b [-x1(0) + x2(0)]2

+
m

3k
 [x 

#
1(0) - x 

#
2(0)]2 r1/2

 X1
(1)

= -  

1

2
 b [x1(0) + x2(0)]2

+
m

k
 [x 

#
1(0) + x 

#
2(0)]2 r 1/2

r2 = -1:r1 = 1
f2X1

(1), X1
(2), f1,

 x2(t) = X1
(1) cos¢A k

m
 t + f1

 

-
 
X1

(2) cos¢A3k

m
 t + f2

 x1(t) = X1
(1) cos¢A k

m
 t + f1 + X1

(2) cos¢A3k

m
 t + f2

r2 = -1,r1 = 1
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Comparison of Eqs. (E.1) and (E.6) shows that the motion of the system is identical with the

first normal mode only if This requires that (from Eq. E.3)

(E.7)

b. The second normal mode of the system is given by Eq. (E.9) of Example 5.1:

(E.8)

Comparison of Eqs. (E.1) and (E.8) shows that the motion of the system coincides with the sec-

ond normal mode only if This implies that (from Eq. E.2)

(E.9)

*

x1(0) = -x2(0)  and  x 
#
1(0) = -x 

#
2(0)

X1
(1)

= 0.

x
!
(2)(t) = e X1

(2) cos¢A3k

m
 t + f2

-X1
(2) cos¢A3k

m
 t + f2

u

x1(0) = x2(0)  and  x 
#
1(0) = x 

#
2(0)

X1
(2)

= 0.

Free-Vibration Response of a Two-Degree-of-Freedom System

Find the free-vibration response of the system shown in Fig. 5.5(a) with 

and for the initial conditions 

Solution: For the given data, the eigenvalue problem, Eq. (5.8), becomes

or

(E.1)

By setting the determinant of the coefficient matrix in Eq. (E.1) to zero, we obtain the frequency

equation (see Eq. (5.9)):

(E.2)

from which the natural frequencies can be found as

or

(E.3)v1 = 1.5811,  v2 = 2.4495

v1
2
= 2.5,  v2

2
= 6.0

10v4
- 85v2

+ 150 = 0

B -10v2
+ 35  -5

-5  -v2
+ 5

R bX1

X2
r = b0

0
r

B -  m1v
2
+ k1 + k2 - k2

-  k2 - m2v
2
+ k2 + k3

R bX1

X2
r = b0

0
r

x2(0) = x 
#
2(0) = 0.

x 
#
1(0) =x1(0) = 1,c1 = c2 = c3 = 0m2 = 1,m1 = 10,

k3 = 0,k2 = 5,k1 = 30,
E X A M P L E  5 . 3



The substitution of in Eq. (E.1) leads to while in 

Eq. (E.1) yields Thus the normal modes (or eigenvectors) are given by

(E.4)

(E.5)

The free-vibration responses of the masses and are given by (see Eq. (5.15)):

(E.6)

(E.7)

where and are constants to be determined from the initial conditions. By using the

given intial conditions in Eqs. (E.6) and (E.7), we obtain

(E.8)

(E.9)

(E.10)

(E.11)

The solution of Eqs. (E.8) and (E.9) yields

(E.12)

while the solution of Eqs. (E.10) and (E.11) leads to

(E.13)

Equations (E.12) and (E.13) give

(E.14)

Thus the free-vibration responses of and are given by

(E.15)

(E.16)

The graphical representation of Eqs. (E.15) and (E.16) is considered in Example 5.17.

*

 x2(t) =
10

7
 cos 1.5811t -

10

7
 cos 2.4495 t

 x1(t) =
5

7
 cos 1.5811t +

2

7
 cos 2.4495 t

m2m1

X1
(1)

=
5

7
,   X1

(2)
=

2

7
,   f1 = 0,   f2 = 0

X1
(1) sin f1 = 0,   X1

(2) sin f2 = 0

X1
(1) cos f1 =

5

7
,   X1

(2) cos f2 =
2

7

x 
#
2(t = 0) = -3.1622X1

(1)
+ 12.2475X1

(2) sin f2

x 
#
1(t = 0) = 0 =  -1.5811X1

(1) sin f1 - 2.4495X1
(2) sin f2

x2(t = 0) = 0 = 2X1
(1) cos f1 - 5X1

(2) cos f2

x1(t = 0) = 1 = X1
(1) cos f1 + X1

(2) cos f2

f2X1
(1), X1

(2), f1,

 x2(t) = 2X1
(1) cos (1.5811t + f1) - 5X1

(2) cos (2.4495t + f2)

 x1(t) = X1
(1) cos (1.5811t + f1) + X1

(2) cos (2.4495t + f2)

m2m1

X
!
(2)

= bX1
(2)

X2
(2) r = b 1

-5
rX1

(2)

X
!
(1)

= bX1
(1)

X2
(1) r = b 1

2
rX1

(1)

X2
(2)

= -5X1
(2).

v2
= v2

2
= 6.0X2

(1)
= 2X1

(1),v2
= v1

2
= 2.5
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5.4 Torsional System
Consider a torsional system consisting of two discs mounted on a shaft, as shown in

Fig. 5.8. The three segments of the shaft have rotational spring constants and 

as indicated in the figure. Also shown are the discs of mass moments of inertia and 

the applied torques and and the rotational degrees of freedom and The dif-

ferential equations of rotational motion for the discs and can be derived as

which upon rearrangement become

(5.19)

For the free-vibration analysis of the system, Eq. (5.19) reduces to

(5.20)

Note that Eq. (5.20) is similar to Eqs. (5.4) and (5.5). In fact, Eq. (5.20) can be obtained by

substituting and for and respectively.

Thus the analysis presented in Section 5.3 is also applicable to torsional systems with

proper substitutions. The following two examples illustrate the procedure.

k3,x1, x2, m1, m2, k1, k2,kt3u1, u2, J1, J2, kt1, kt2,

 J2u
 $

2 - kt2u1 + (kt2 + kt3)u2 = 0

 J1u
 $

1 + (kt1 + kt2)u1 - kt2u2 = 0

 J2u
 $

2 - kt2u1 + (kt2 + kt3)u2 = Mt2

 J1u
 $

1 + (kt1 + kt2)u1 - kt2u2 = Mt1

 J2u
 $

2 = -
 
kt2(u2 - u1) - kt3u2 + Mt2

 J1u
 $

1 = -
 
kt1u1 + kt2(u2 - u1) + Mt1

J2J1

u2.u1Mt2,Mt1

J2,J1

kt3,kt1, kt2,

kt1 kt3

kt2

Mt1
Mt2

J1 J2

u1

kt1u1

kt2(u2  u1)

kt3u2

u2

(a)

(b)

u1 u2

FIGURE 5.8 Torsional system with discs

mounted on a shaft.



E X A M P L E  5 . 4
Natural Frequencies of a Torsional System

Find the natural frequencies and mode shapes for the torsional system shown in Fig. 5.9 for

and 

Solution: The differential equations of motion, Eq. (5.20), reduce to (with 

and ):

(E.1)

Rearranging and substituting the harmonic solution

(E.2)

gives the frequency equation:

(E.3)

The solution of Eq. (E.3) gives the natural frequencies

(E.4)

The amplitude ratios are given by

(E.5)

Equations (E.4) and (E.5) can also be obtained by substituting 

and in Eqs. (5.10) and (5.11).k3 = 0m2 = J2 = 2J0,m1 = J1 = J0,
k2 = kt2 = kt,k1 = kt1 = kt,

 r2 =
®2

(2)

®1
(2)

= 2 -
(5 + 217)

4

 r1 =
®2

(1)

®1
(1)

= 2 -
(5 - 217)

4

v1 = A
kt

4J0
 (5 - 217)  and  v2 = A

kt

4J0
 (5 + 217)

2v4J0
2
- 5v2J0kt + kt

2
= 0

ui(t) = ®i cos(vt + f);  i = 1, 2

 2J0u
 $

2 - ktu1 + ktu2 = 0

 J0u
 $

1 + 2ktu1 - ktu2 = 0

J2 = 2J0J1 = J0,
kt1 = kt2 = kt,kt3 = 0,

kt1 = kt2 = kt.J1 = J0, J2 = 2J0,
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kt1

kt2

J1

J2 u2

u1

FIGURE 5.9
Torsional system.

*
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Note: For a two-degree-of-freedom system, the two natural frequencies and are not

equal to either of the natural frequencies of the two single-degree-of-freedom systems con-

structed from the same components. In Example 5.4, the single-degree-of-freedom systems

and 

and and 

are combined to obtain the system shown in Fig. 5.9. It can be seen that and are dif-

ferent from and v2.v1

v2v1

+with v2 = A
kt2

J2

=
1

22A
kt

J0
*

J2kt2

+with v1 = A
kt1

J1

= A
kt

J0
*

J1kt1

v2v1

E X A M P L E  5 . 5
Natural Frequencies of a Marine Engine Propeller

The schematic diagram of a marine engine connected to a propeller through gears is shown in Fig.

5.10(a). The mass moments of inertia of the flywheel, engine, gear 1, gear 2, and the propeller (in

) are 9000, 1000, 250, 150, and 2000, respectively. Find the natural frequencies and mode

shapes of the system in torsional vibration.

Solution

Approach: Find the equivalent mass moments of inertia of all rotors with respect to one rotor and

use a two-degree-of-freedom model.

Assumptions:

1. The flywheel can be considered to be stationary (fixed), since its mass moment of inertia is

very large compared to that of other rotors.

2. The engine and gears can be replaced by a single equivalent rotor.

Since gears 1 and 2 have 40 and 20 teeth, shaft 2 rotates at twice the speed of shaft 1. Thus the mass

moments of inertia of gear 2 and the propeller, referred to the engine, are given by

Since the distance between the engine and the gear unit is small, the engine and the two gears can be

replaced by a single rotor with a mass moment of inertia of

Assuming a shear modulus of for steel, the torsional stiffnesses of shafts 1 and 2 can

be determined as

80 * 109 N/m2

J1 = JE + JG1 + (JG2)eq = 1000 + 250 + 600 =  1850 kg-m2

 (JP)eq = (2)2(2000) = 8000 kg-m2

  (JG2)eq = (2)2(150)  = 600 kg-m2

kg-m2
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0.8 m

Steel
shaft 1,
dia. 0.1 m

Steel
shaft 2,
dia. 0.15 m

1.0 m

Flywheel

Engine

Gear 1, 40 teeth

Gear 2,
20 teeth

(a)

(b)

Propeller

u1(t) u2(t)

kt1 kt2

J1 J2

FIGURE 5.10 Marine engine propeller system.

Since the length of shaft 2 is not negligible, the propeller is assumed to be a rotor connected at the

end of shaft 2. Thus the system can be represented as a two-degree-of-freedom torsional system, as

indicated in Fig. 5.10(b). By setting and in Eq. (5.10),

the natural frequencies of the system can be found as

 ; B b (kt1 + kt2) J2 + kt2 J1

J1 J2
r2

- 4b (kt1 + kt2) kt2 - kt2
2

J1 J2
r R 1/2

 v1
2, v2

2
=

1

2
 b (kt1 + kt2) J2 + kt2 J1

J1 J2
r

m2 = J2k3 = 0, k1 = kt1, k2 = kt2, m1 = J1,

 kt2 =
GI02

l2
=

G

l2
 ¢pd2

4

32
=

(80 * 109)(p)(0.15)4

(1.0)(32)
= 3,976,087.5 N-m/rad

 kt1 =
GI01

l1
=

G

l1
 ¢pd1

4

32
=

(80 * 109)(p)(0.10)4

(0.8)(32)
= 981,750.0 N-m/rad
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(E.1)

Since

and

Eq. (E.1) gives

Thus

For the mode shapes, we set and in Eq. (5.11) to obtain

and

Thus the mode shapes can be determined from an equation similar to Eq. (5.12) as

b ®1

®2
r (1)

= b 1

r1
r =

1

1.2072

 =
-  (1850) (3091.6083) + (495.7837 * 104)

397.6087 * 104
= -  0.1916

 r2 =
-  J1v2

2
+ (kt1 + kt2)

kt2

 =
-  (1850) (85.3117) + (495.7837 * 104)

397.6087 * 104
= 1.2072

 r1 =
-  J1v1

2
+ (kt1 + kt2)

kt2

m2 = J2k1 = kt1, k2 = kt2, k3 = 0, m1 = J1,

 v2
2
= 3091.6083 or v2 = 55.6022 rad/sec

 v1
2
= 85.3117  or v1 = 9.2364 rad/sec

 = 1588.46 ; 1503.1483

 v1
2, v2

2
= 1588.46 ; [(1588.46)2

- 26.3750 * 104]1/2

kt1kt2

J1J2
=

(98.1750 * 104) (397.6087 * 104)

(1850) (8000)
= 26.3750 * 104

 = 1588.46

 
(kt1 + kt2)

2J1
+

kt2

2J2
=

(98.1750 + 397.6087) * 104

2 * 1850
+

397.6087 * 104

2 * 8000

 ; B b (kt1 + kt2)

2J1
+

kt2

2J2
r2

-
kt1 

kt2

J1J2
R 1/2

 = b (kt1 + kt2)

2J1
+

kt2

2J2
r
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and

*

5.5 Coordinate Coupling and Principal Coordinates
As stated earlier, an n-degree-of-freedom system requires n independent coordinates to

describe its configuration. Usually, these coordinates are independent geometrical quanti-

ties measured from the equilibrium position of the vibrating body. However, it is possible

to select some other set of n coordinates to describe the configuration of the system. The

latter set may be, for example, different from the first set in that the coordinates may have

their origin away from the equilibrium position of the body. There could be still other sets

of coordinates to describe the configuration of the system. Each of these sets of n coordi-

nates is called the generalized coordinates.

As an example, consider the lathe shown in Fig. 5.11(a). For simplicity, the lathe bed

can be replaced by an elastic beam supported on short elastic columns and the headstock

and tailstock can be replaced by two lumped masses as shown in Fig. 5.11(b). The model-

ing of the lathe as a two-degree-of-freedom system has been indicated in Section 5.1. As

shown in Figs. 5.12(a) and (b), any of the following sets of coordinates can be used to

describe the motion of this two-degree-of-freedom system:

1. Deflections and of the two ends of the lathe AB.

2. Deflection x(t) of the C.G. and rotation .

3. Deflection of the end A and rotation .

4. Deflection y(t) of point P located at a distance e to the left of the C.G. and

rotation u(t).

u(t)x1(t)
u(t)

x2(t)x1(t)

b ®1

®2
r (2)

= b 1

r2
r =

1

-  0.1916

FIGURE 5.11 Lathe. (Photo courtersy of South Bend Lathe Corp.)

Bed

(b)

Headstock TailstockLive center Dead center

(a)
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Thus any set of these coordinates and represents the gen-

eralized coordinates of the system. Now we shall derive the equations of motion of the lathe

using two different sets of coordinates to illustrate the concept of coordinate coupling.

(y, u)(x1, x2), (x, u), (x1, u),

k1 k2
l1

l1

A B

A B

C.G.

l2

m, J0

k1 k2
l 1 l 2

A B

C.G. P

l 1 l 2

m, J0

P

e

C.G.

A

B

l2

x1(t)

x2(t)

x(t)

u(t)

k1x1  k1(x  l1u)

k2x2  k2(x  l2u)

B

C.G.

A

B

k2(y  l 2u)

y2  l 2u

y  l 1u

k1(y  l 1u)

A

y(t)

u(t)

(a)

(b)

FIGURE 5.12 Modeling of a lathe.

Equations of Motion Using x(t) and From the free-body diagram shown in Fig.

5.12(a), with the positive values of the motion variables as indicated, the force equilibrium

equation in the vertical direction can be written as

(5.21)

and the moment equation about the C.G. can be expressed as

(5.22)

Equations (5.21) and (5.22) can be rearranged and written in matrix form as

(5.23) = b0

0
r

 Bm 0

0 J0
R b x 

$

u
 $ r + B (k1 + k2) -(k1l1 - k2l2)

-  (k1l1 - k2l2)        (k1l1
2
+ k2l2

2)
R bx

u
r

J0u
 $
= k1(x - l1u)l1 - k2(x + l2u)l2

mx
$
= -

 k1(x - l1u) - k2(x + l2u)

u(t).
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It can be seen that each of these equations contain x and They become independent of

each other if the coupling term is equal to zero that is, if If

the resultant motion of the lathe AB is both translational and rotational when

either a displacement or torque is applied through the C.G. of the body as an initial condi-

tion. In other words, the lathe rotates in the vertical plane and has vertical motion as well,

unless This is known as elastic or static coupling.

Equations of Motion Using y(t) and From Fig. 5.12(b), where y(t) and are used

as the generalized coordinates of the system, the equations of motion for translation and

rotation can be written as

(5.24)

These equations can be rearranged and written in matrix form as

(5.25)

Both the equations of motion represented by Eq. (5.25) contain y and so they are

coupled equations. They contain static (or elastic) as well as dynamic (or mass) cou-

pling terms. If the system will have dynamic or inertia coupling only. In

this case, if the lathe moves up and down in the y direction, the inertia force which

acts through the center of gravity of the body, induces a motion in the direction, by

virtue of the moment Similarly, a motion in the direction induces a motion of 

the lathe in the y direction due to the force 

Note the following characteristics of these systems:

1. In the most general case, a viscously damped two-degree-of-freedom system has

equations of motion in the following form:

(5.26)

This equation reveals the type of coupling present. If the stiffness matrix is not diago-

nal, the system has elastic or static coupling. If the damping matrix is not diagonal, the

system has damping or velocity coupling. Finally, if the mass matrix is not diagonal,

the system has mass or inertial coupling. Both velocity and mass coupling come under

the heading of dynamic coupling.

2. The system vibrates in its own natural way regardless of the coordinates used. The

choice of the coordinates is a mere convenience.

Bm11 m12

m12 m22
R b x

$

1

x
$

2
r + b c11 c12

c12 c22
r b x 

#

1

x 
#

2
r + Bk11 k12

k12 k22
R b x1

x2
r = b0

0
r

meu
$

.

umy 
$
e.

u

my 
$
,

k1l1 = k2l2,

u,

 = b0

0
r

 B m me

me Jp
R b y

$

u

$ r + B (k1 + k2) (k2l2 - k1l1)

(-  k1l1 + k2l2) (k1l1
2
+ k2l2

2)
R b y

u
r

 Jpu
 $

= k1(y - l1u)l1 - k2(y + l2u)l2 - mey 
$

 my 
$

= -
 k1(y - l1u) - k2(y + l2u) - meu

 $

u(t)u(t).

k1l1 = k2l2.

k1l1 Z k2l2,
k1l1 = k2l2.(k1l1 - k2l2)

u.
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3. From Eqs. (5.23) and (5.25), it is clear that the nature of the coupling depends on the

coordinates used and is not an inherent property of the system. It is possible to

choose a system of coordinates and which give equations of motion that

are uncoupled both statically and dynamically. Such coordinates are called principal

or natural coordinates. The main advantage of using principal coordinates is that the

resulting uncoupled equations of motion can be solved independently of one another.

The following example illustrates the method of finding the principal coordinates in

terms of the geometrical coordinates.

q2(t)q1(t)

E X A M P L E  5 . 6
Principal Coordinates of Spring-Mass System

Determine the principal coordinates for the spring-mass system shown in Fig. 5.6.

Solution

Approach: Define two independent solutions as principal coordinates and express them in terms of

the solutions and 

The general motion of the system shown in Fig. 5.6 is given by Eq. (E.10) of Example 5.1:

(E.1)

where and are constants. We define a new set of coordinates and

such that

(E.2)

Since and are harmonic functions, their corresponding equations of motion can be writ-

ten as1

(E.3) q
$

2 + + 3k

m
*q2 = 0

 q
$

1 + + k

m
*q1 = 0

q2(t)q1(t)

 q2(t) = B2 cos+A3k

m
 t + f2*

 q1(t) = B1 cos+A k

m
 t + f1*

q2(t)
q1(t)f2B1 = X1

(1), B2 = X1
(2), f1,

 x2(t) = B1 cos+A k

m
 t + f1* - B2 cos+A3k

m
 t + f2*

 x1(t) = B1 cos+A k

m
 t + f1* + B2 cos+A3k

m
 t + f2*

x2(t).x1(t)

1Note that the equation of motion corresponding to the solution is given by q
$
+ v2q = 0.q = B cos(vt + f)
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These equations represent a two-degree-of-freedom system whose natural frequencies are 

and Because there is neither static nor dynamic coupling in the equations of motion

(E.3), and are principal coordinates. From Eqs. (E.1) and (E.2), we can write

(E.4)

The solution of Eqs. (E.4) gives the principal coordinates:

(E.5)

*

 q2(t) =
1

2
 [x1(t) - x2(t)]

 q1(t) =
1

2
 [x1(t) + x2(t)]

 x2(t) = q1(t) - q2(t)

 x1(t) = q1(t) + q2(t)

q2(t)q1(t)
v2 = 23k/m.

v1 = 1k/m

E X A M P L E  5 . 7
Frequencies and Modes of an Automobile

Determine the pitch (angular motion) and bounce (up-and-down linear motion) frequencies and the

location of oscillation centers (nodes) of an automobile with the following data (see Fig. 5.13):

Mass 

Radius of gyration 

Distance between front axle and C.G. 

Distance between rear axle and C.G. 

Front spring stiffness 

Rear spring stiffness (kr) = 22 kN/m

(kf) = 18 kN/m

(l2) = 1.5 m

(l1) = 1.0 m

(r) = 0.9 m

(m) = 1000 kg

Bounce

Pitch

C.G.
kf kr

l1 l2

x

uC.G.

Reference

kf kr

FIGURE 5.13 Pitch and bounce

motions of an automobile.
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Solution: If x and are used as independent coordinates, the equations of motion are given by Eq.

(5.23) with and For free vibration, we assume a harmonic solution:

(E.1)

Using Eqs. (E.1) and (5.23), we obtain

(E.2)

For the known data, Eq. (E.2) becomes

(E.3)

from which the frequency equation can be derived:

(E.4)

The natural frequencies can be found from Eq. (E.4):

(E.5)

With these values, the ratio of amplitudes can be found from Eq. (E.3):

(E.6)

The node locations can be obtained by noting that the tangent of a small angle is approximately equal

to the angle itself. Thus, from Fig. 5.14, we find that the distance between the C.G. and the node is

m for and 0.3061 m for The mode shapes are shown by dashed lines in Fig. 5.14.v2.v1-2.6461

X(1)

®
(1)

= -2.6461,  X(2)

®
(2)

= 0.3061

v1 = 5.8593 rad/s,  v2 = 9.4341 rad/s

8.1v4
- 999v2

+ 24,750 = 0

B(-1000v2
+ 40,000) 15,000

15,000 (-810v2
+ 67,500)

R b X

®
r = b0

0
r

B(-  mv2
+ kf + kr) (-  kf l1 + kr l2)

(-  kf l1 + kr l2) (-  J0v
2
+ kf l1

2
+ kr l2

2)
R b X

®
r = b0

0
r

x(t) = X cos (vt + f),  u (t) = ® cos (vt + f)

J0 = mr2.k1 = kf, k2 = kr,
u

C.G.
O

+x

2.6461

0.3061

C.G.

O
+x +u

*u

FIGURE 5.14 Mode shapes of an auto-

mobile.

*
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5.6 Forced-Vibration Analysis
The equations of motion of a general two-degree-of-freedom system under external forces

can be written as

(5.27)

Equations (5.1) and (5.2) can be seen to be special cases of Eq. (5.27), with 

and We shall consider the external forces to be harmonic:

(5.28)

where is the forcing frequency. We can write the steady-state solutions as

(5.29)

where and are, in general, complex quantities that depend on and the system para-

meters. Substitution of Eqs. (5.28) and (5.29) into Eq. (5.27) leads to

(5.30)

As in Section 3.5, we define the mechanical impedance as

(5.31)

and write Eq. (5.30) as

(5.32)

where

and

F
!

0 = bF10

F20
r

 X
!
= bX1

X2
r

 [Z(iv)] = BZ11(iv) Z12(iv)

Z12(iv) Z22(iv)
R = Impedance matrix

[Z(iv)]X
!

= F
!

0

Zrs(iv) = -v
2mrs + ivcrs + krs,  r, s = 1, 2

Zrs(iv)

= bF10

F20
r

B (-v2m11 + ivc11 + k11) (-v2m12 + ivc12 + k12)

(-v2m12 + ivc12 + k12) (-v2m22 + ivc22 + k22)
R bX1

X2
r

vX2X1

xj(t) = Xje
ivt,  j = 1, 2

v

Fj(t) = Fj0eivt,  j = 1, 2

m12 = 0.m22 = m2,
m11 = m1,

 + Bk11 k12

k12 k22
R b x1

x2
r = bF1

F2
r

 Bm11 m12

m12 m22
R b x

$
1

x
$

2
r + Bc11 c12

c12 c22
R b x 

#
1

x 
#
2
r
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Equation (5.32) can be solved to obtain

(5.33)

where the inverse of the impedance matrix is given by

(5.34)

Equations (5.33) and (5.34) lead to the solution

(5.35)

By substituting Eq. (5.35) into Eq. (5.29) we can find the complete solution, and 

The analysis of a two-degree-of-freedom system used as a vibration absorber is given

in Section 9.11. Reference [5.4] deals with the impact response of a two-degree-of-freedom

system, while Ref. [5.5] considers the steady-state response under harmonic excitation.

x2(t).x1(t)

 X2(iv) =
-  Z12(iv)F10 + Z11(iv)F20

Z11(iv)Z22(iv) - Z12
2 (iv)

 X1(iv) =
Z22(iv)F10 - Z12(iv)F20

Z11(iv)Z22(iv) - Z12
2 (iv)

[Z(iv)] 

-
 

1
=

1

Z11(iv)Z22(iv) - Z12
2 (iv)

B Z22(iv) -Z12(iv)

-Z12(iv) Z11(iv)
R

X
!
= [Z(iv)] 

-
 

1 F
!

0

E X A M P L E  5 . 8
Steady-State Response of Spring-Mass System

Find the steady-state response of the system shown in Fig. 5.15 when the mass is excited by the

force Also, plot its frequency-response curve.

Solution: The equations of motion of the system can be expressed as

(E.1)

Comparison of Eq. (E.1) with Eq. (5.27) shows that

We assume the solution to be as follows:2

(E.2)

Equation (5.31) gives

(E.3)Z11(v) = Z22(v) = -mv2
+ 2k,   Z12(v) = -k

xj(t) = Xj cos vt,  j = 1, 2

k11 = k22 = 2k, k12 = -
 
k, F1 = F10 cos vt, F2 = 0

m11 = m22 = m, m12 = 0, c11 = c12 = c22 = 0, 

Bm 0

0 m
R b x

$
1

x
$

2
r + B 2k -  k

-  k 2k
R b x1

x2
r = bF10 cos vt

0
r

F1(t) = F10 cos vt.
m1

2Since we shall assume the solution also to be 

It can be verified that are real for an undamped system.Xjj = 1, 2.

xj = Re(Xj
   

e  

i
 
v

 
t) = Xj cos vt,F10 cos vt = Re(F10

   

e   

i
 
v

 
t),
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Hence and are given by Eq. (5.35):

(E.4)

(E.5)

By defining and Eqs. (E.4) and (E.5) can be expressed as

(E.6)

(E.7)

The responses and are shown in Fig. 5.16 in terms of the dimensionless parameter In this

parameter, was selected arbitrarily; could have been selected just as easily. It can be seen that

the amplitudes and become infinite when or Thus there are two resonance

conditions for the system: one at and another at At all other values of the amplitudes of

vibration are finite. It can be noted from Fig. 5.16 that there is a particular value of the frequency atv

v,v2.v1

v
2
= v2

2.v
2
= v1

2X2X1

v2v1

v/v1.X2X1

 X2(v) =
F10

kB ¢v2

v1

2

- ¢ v
v1

2R B1 - ¢ v
v1

2R

 X1(v) =

b2 - ¢ v
v1

2 rF10

kB ¢v2

v1

2

- ¢ v
v1

2R B1 - ¢ v
v1

2R

v2
2
= 3k/m,v1

2
= k/m

 X2(v) =
kF10

(-mv2
+ 2k)2

- k2
=

kF10

(-mv2
+ 3k)(-mv2

+ k)

 X1(v) =

(-v2m + 2k) F10

(-v2m + 2k)2
- k2

=

(-v2m + 2k) F10

(-mv2
+ 3k)(-mv2

+ k)

X2X1

m

k

k

x1(t)

m
x2(t)

k

f1(t) * F10 cos vt

FIGURE 5.15 A two-mass system

subjected to harmonic force.
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which the vibration of the first mass to which the force is applied, is reduced to zero. This

characteristic forms the basis of the dynamic vibration absorber discussed in Chapter 9.

*

5.7 Semidefinite Systems
Semidefinite systems are also known as unrestrained or degenerate systems. Two examples

of such systems are shown in Fig. 5.17. The arrangement in Fig. 5.17(a) may be considered

to represent two railway cars of masses and with a coupling spring k. The arrange-

ment in Fig. 5.17(c) may be considered to represent two rotors of mass moments of inertia

and connected by a shaft of torsional stiffness kt.J2J1

m2m1

f1(t)m1,

*3

*2

*1

0

1

2

3

1 2 3

(a) (b)

4

X1·k

F10

*3

*2

*1

0

1

2

3

1 2 3 4

X2·k

F10

v1

v2

v1

v1

v2v1
v v

FIGURE 5.16 Frequency-response curves of Example 5.8.

Shaft

Rotor 2
(turbine)

(c)(b)

Rotor 1
(air blower)

m1

x1(t)
J1J2

kt

m2k(x2 * x1)

x2(t)

(a)

m1

x1(t)

m2

k

x2(t)

FIGURE 5.17 Semidefinite systems.



Joseph Louis Lagrange (1736 1813) was an Italian-born mathematician famous
for his work on theoretical mechanics. He was made professor of mathematics in
1755 at the Artillery School in Turin. Lagrange s masterpiece, his Méchanique,
contains what are now known as Lagrange s equations,  which are very useful in
the study of vibrations. His work on elasticity and strength of materials, where he
considered the strength and deflection of struts, is less well known.
(Courtesy of Dirk J. Struik, A Concise History of Mathematics, 2nd ed., Dover
Publications, New York, 1948.)

C H A P T E R  6

Multidegree-of-
Freedom Systems

553

Chapter Outline
Chapter Outline 553

Learning Objectives 554

6.1 Introduction 555

6.2 Modeling of Continuous Systems as Multidegree-

of-Freedom Systems 555

6.3 Using Newton s Second Law to Derive Equations

of Motion 557

6.4 Influence Coefficients 562

6.5 Potential and Kinetic Energy Expressions

in Matrix Form 574

6.6 Generalized Coordinates and Generalized

Forces 576

6.7 Using Lagrange s Equations to Derive Equations

of Motion 577

6.8 Equations of Motion of Undamped Systems

in Matrix Form 581

6.9 Eigenvalue Problem 583

6.10 Solution of the Eigenvalue Problem 585

6.11 Expansion Theorem 596

6.12 Unrestrained Systems 596

6.13 Free Vibration of Undamped 

Systems 601

6.14 Forced Vibration of Undamped Systems 

Using Modal Analysis 603

6.15 Forced Vibration of Viscously Damped

Systems 610

6.16 Self-Excitation and Stability Analysis 617

6.17 Examples Using MATLAB 619

Chapter Summary 627

References 627

Review Questions 628

Problems 632

Design Projects 652



554 CHAPTER 6 MULTIDEGREE-OF-FREEDOM SYSTEMS

Multidegree-of-freedom systems are the topic of this chapter. The modeling of continu-

ous systems as multidegree-of-freedom systems is presented. The equations of a gen-

eral n-degree-of-freedom system are derived using Newton s second law of motion.

Because the solution of the equations of motion in scalar form involve complicated alge-

braic manipulations, we use matrix representation for multidegree-of-freedom systems.

By expressing the coupled set of n equations in matrix form, the mass, damping, and stiff-

ness matrices are identified. The derivation of equations using influence coefficients is

also presented. The stiffness, flexibility, and inertia influence coefficients are presented

from first principles. The expressions for potential and kinetic energies and their use in

deriving the equations of motion based on Lagrange s equations are presented. The con-

cepts of generalized coordinates and generalized forces are presented. After expressing

the free-vibration equations in matrix form, the eigenvalue problem is derived in matrix

form. The solution of the eigenvalue problem using the solution of the characteristic

(polynomial) equation is outlined to determine the natural frequencies and mode shapes

(or normal modes) of the system. The concepts of orthogonality of normal modes, modal

matrix, and orthonormalization of the mass and stiffness matrices are introduced. The

expansion theorem and the unrestrained or semidefinite systems are also presented. The

free vibration of undamped systems using modal vectors and the forced vibration of

undamped systems using modal analysis are considered with illustrative examples. The

equations of motion for the forced vibration of viscously damped systems are considered

through the introduction of Rayleigh s dissipation function. The equations of motion are

uncoupled for proportionally damped systems, and the solution of each of the uncoupled

equations is outlined through the Duhamel integral. The self-excitation and stability analy-

sis of multidegree-of-freedom systems is considered using Ruth-Hurwitz stability criterion.

Finally, MATLAB solutions are presented for the free and forced vibration of multidegree-

of-freedom systems.

Learning Objectives

After you have finished studying this chapter, you should be able to do the following:

* Formulate the equations of motion of multidegree-of-freedom systems using New-

ton s second law, influence coefficients, or Lagrange s equations.

* Express the equation of motion in matrix form.

* Find the natural frequencies of vibration and the modal vectors by solving the eigen-

value problem.

* Determine the free- and forced-vibration response of undamped systems using modal

analysis.

* Use proportional damping to find the response of damped systems.

* Analyze the stability characteristics of multidegree-of-freedom systems using the

Routh-Hurwitz criterion.

* Solve free- and forced-vibration problems using MATLAB.
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6.1 Introduction
As stated in Chapter 1, most engineering systems are continuous and have an infinite

number of degrees of freedom. The vibration analysis of continuous systems requires the

solution of partial differential equations, which is quite difficult. For many partial differ-

ential equations, in fact, analytical solutions do not exist. The analysis of a multidegree-

of-freedom system, on the other hand, requires the solution of a set of ordinary

differential equations, which is relatively simple. Hence, for simplicity of analysis, con-

tinuous systems are often approximated as multidegree-of-freedom systems.

All the concepts introduced in the preceding chapter can be directly extended to the case

of multidegree-of-freedom systems. For example, there is one equation of motion for each

degree of freedom; if generalized coordinates are used, there is one generalized coordinate

for each degree of freedom. The equations of motion can be obtained from Newton s second

law of motion or by using the influence coefficients defined in Section 6.4. However, it is

often more convenient to derive the equations of motion of a multidegree-of-freedom system

by using Lagrange s equations.

There are n natural frequencies, each associated with its own mode shape, for a system

having n degrees of freedom. The method of determining the natural frequencies from the

characteristic equation obtained by equating the determinant to zero also applies to these

systems. However, as the number of degrees of freedom increases, the solution of the char-

acteristic equation becomes more complex. The mode shapes exhibit a property known as

orthogonality, which can be utilized for the solution of undamped forced-vibration prob-

lems using a procedure known as modal analysis. The solution of forced-vibration problems

associated with viscously damped systems can also be found conveniently by using a con-

cept called proportional damping.

6.2 Modeling of Continuous Systems as Multidegree-of-Freedom Systems
Different methods can be used to approximate a continuous system as a multidegree-of-

freedom system. A simple method involves replacing the distributed mass or inertia of the

system by a finite number of lumped masses or rigid bodies. The lumped masses are assumed

to be connected by massless elastic and damping members. Linear (or angular) coordinates

are used to describe the motion of the lumped masses (or rigid bodies). Such models are

called lumped-parameter or lumped-mass or discrete-mass systems. The minimum number

of coordinates necessary to describe the motion of the lumped masses and rigid bodies

defines the number of degrees of freedom of the system. Naturally, the larger the number of

lumped masses used in the model, the higher the accuracy of the resulting analysis.

Some problems automatically indicate the type of lumped-parameter model to be

used. For example, the three-story building shown in Fig. 6.1(a) automatically suggests

using a three-lumped-mass model, as indicated in Fig. 6.1(b). In this model, the inertia of

the system is assumed to be concentrated as three point masses located at the floor levels,

and the elasticities of the columns are replaced by the springs. Similarly, the radial drilling



556 CHAPTER 6 MULTIDEGREE-OF-FREEDOM SYSTEMS

m3

m2

m1

(a) (b)

k3

k2

k1

FIGURE 6.1 Three-story building.

machine shown in Fig. 6.2(a) can be modeled using four lumped masses and four spring

elements (elastic beams), as shown in Fig. 6.2(b).

Another popular method of approximating a continuous system as a multidegree-of-

freedom system involves replacing the geometry of the system by a large number of small

elements. By assuming a simple solution within each element, the principles of compati-

bility and equilibrium are used to find an approximate solution to the original system. This

method, known as the finite element method, is considered in detail in Chapter 12.

m2

m4m1 m3

(b)

Elastic
beam

(a)

Head

Arm

Base
Column

FIGURE 6.2 Radial drilling machine. (Photo courtesy of South Bend Lathe Corp.)



6.3 USING NEWTON S SECOND LAW TO DERIVE EQUATIONS OF MOTION 557

6.3 Using Newton s Second Law to Derive Equations of Motion
The following procedure can be adopted to derive the equations of motion of a multidegree-

of-freedom system using Newton s second law of motion:

1. Set up suitable coordinates to describe the positions of the various point masses and

rigid bodies in the system. Assume suitable positive directions for the displacements,

velocities, and accelerations of the masses and rigid bodies.

2. Determine the static equilibrium configuration of the system and measure the displace-

ments of the masses and rigid bodies from their respective static equilibrium positions.

3. Draw the free-body diagram of each mass or rigid body in the system. Indicate the

spring, damping, and external forces acting on each mass or rigid body when positive

displacement and velocity are given to that mass or rigid body.

4. Apply Newton s second law of motion to each mass or rigid body shown by the free-

body diagram as

(6.1)

or

(6.2)

where denotes the sum of all forces acting on mass and indicates the

sum of moments of all forces (about a suitable axis) acting on the rigid body of mass

moment of inertia 

The procedure is illustrated in the following examples.

Ji.

©j  Mijmi©j  Fij

Ji u

$

i = a
j

 Mij (for rigid body of inertia Ji)

mi x
$

i = a
j

 Fij (for mass mi)

E X A M P L E  6 . 1
Equations of Motion of a Spring-Mass-Damper System

Derive the equations of motion of the spring-mass-damper system shown in Fig. 6.3(a).

Solution:

Approach: Draw free-body diagrams of masses and apply Newton s second law of motion. The

coordinates describing the positions of the masses, are measured from their respective static

equilibrium positions, as indicated in Fig. 6.3(a). The free-body diagram of a typical interior mass 

is shown in Fig. 6.3(b) along with the assumed positive directions for its displacement, velocity, and

acceleration. The application of Newton s second law of motion to mass gives

or

(E.1) + (ki + ki+1)xi - ki+1xi+1 = Fi ;              i = 2, 3, Á , n - 1

 mix
$

i - cix
#
i-1 + (ci + ci+1) x

#
i - ci+1x

#
i+1 - kixi-1

 + ci+1 (x
#
i+1 - x

#
i) + Fi ;              i = 2, 3, Á , n - 1

 mix
$

i = -  ki (xi - xi-1) + ki+1 (xi+1 - xi) - ci (x
#
i - x

#
i-1)

mi

mi

xi(t),
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m1 m2 mi mj mn

k1

x1

F1(t)

c1

k2

c2

ki

ci

kj

cj

kn

cn

kn 1

cn 1

ki(xi  xi  1)

F2(t) Fi (t)

Fi(t)

mi

Fj (t) Fn(t)

Point 1
x2

Point 2
xi

Point i
xj

Point j
xn

Point n

ci(xi  xi  1)

ki  1(xi 1  xi)

ci  1(xi 1  xi)

(a)

(b)

xi, xi, xi

FIGURE 6.3 Spring-mass-damper system.

The equations of motion of the masses and can be derived from Eq. (E.1) by setting 

along with and along with respectively:

(E.2)

(E.3)

Notes:

1. The equations of motion, Eqs. (E.1) to (E.3), of Example 6.1 can be expressed in matrix form as

(6.3)

where [m], [c], and [k] are called the mass, damping, and stiffness matrices, respectively, and

are given by

(6.4)

(6.5) [c] = G(c1 + c2) -  c2 0 Á 0 0

-  c2 (c2 + c3) -  c3
Á 0 0

0  -  c3 (c3 + c4) Á 0 0
# # # Á # #
# # # Á # #
# # # Á # #

0 0 0 Á -  cn (cn + cn+1)

W
 [m] = Em1 0 0 Á 0 0

0 m2 0 Á 0 0

0 0 m3
Á 0 0

o

0 0 0 Á 0 mn

U
[m]x

$
:

+ [c]x
#
:

+ [k] x: = F
!

 mnx
$

n - cnx
#
n-1 + (cn + cn+1)x

#
n - knxn-1 + (kn + kn+1)xn = Fn

 m1x
$

1 + (c1 + c2)x
#
1 - c2x

#
2 + (k1 + k2)x1 - k2x2 = F1

xn+1 = 0,i = nx0 = 0
i = 1mnm1
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(6.6)

and and are the displacement, velocity, acceleration, and force vectors, given by

(6.7)

2. For an undamped system (with all ), the equations of motion reduce to

(6.8)

3. The spring-mass-damper system considered above is a particular case of a general n-degree-of-

freedom spring-mass-damper system. In their most general form, the mass, damping, and stiff-

ness matrices are given by

(6.9)

(6.10) [c] = Fc11 c12 c13
Á c1n

c12 c22 c23
Á c2n

# # # Á #

# # # Á #

# # # Á #

c1n c2n c3n
Á cnn

V
 [m] = Fm11 m12 m13

Á m1n

m12 m22 m23
Á m2n

#

#

#

m1n m2n m3n
Á mnn

V
[m]x

$
:

+ [k] x: = F
!

ci = 0, i = 1, 2, Á , n + 1

x
$
:

= f x
$

1(t)

x
$

2(t)
#

#

#

x
$

n(t)

v ,  F
!
= f F1(t)

F2(t)
#

#

#

Fn(t)

v
x
:

= f x1(t)

x2(t)
#

#

#

xn(t)

v ,  x
#
:

= f x
#
1(t)

x
#
2(t)
#

#

#

x
#
n(t)

v ,

F
!

x
!
, x
!#

, x
!$

,

[k] = G(k1 + k2) -  k2 0 Á 0 0

-  k2 (k2 + k3) -  k3
Á 0 0

0  -  k3 (k3 + k4) Á 0 0
#

#

#

0 0 0 Á -  kn (kn + kn+1)

W
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and

(6.11)

As stated in Section 5.5, if the mass matrix is not diagonal, the system is said to have mass

or inertia coupling. If the damping matrix is not diagonal, the system is said to have damp-

ing or velocity coupling. Finally, if the stiffness matrix is not diagonal, the system is said to

have elastic or static coupling. Both mass and damping coupling are also known as dynamic

coupling.

4. The differential equations of the spring-mass system considered in Example 6.1 (Fig. 6.3(a)) can

be seen to be coupled; each equation involves more than one coordinate. This means that the

equations cannot be solved individually one at a time; they can only be solved simultaneously. In

addition, the system can be seen to be statically coupled, since stiffnesses are coupled that is,

the stiffness matrix has at least one nonzero off-diagonal term. On the other hand, if the mass

matrix has at least one off-diagonal term nonzero, the system is said to be dynamically coupled.

Further, if both the stiffness and mass matrices have nonzero off-diagonal terms, the system is

said to be coupled both statically and dynamically.

*

[k] = Fk11 k12 k13
Á k1n

k12 k22 k23
Á k2n

#

#

#

k1n k2n k3n
Á knn

V

E X A M P L E  6 . 2
Equations of Motion of a Trailer Compound Pendulum System

Derive the equations of motion of the trailer compound pendulum system shown in Fig. 6.4(a).

Solution:

Approach: Draw the free-body diagrams and apply Newton s second law of motion.

The coordinates x(t) and are used to describe, respectively, the linear displacement of the

trailer and the angular displacement of the compound pendulum from their respective static equilib-

rium positions. When positive values are assumed for the displacements x(t) and velocities 

and and accelerations and the external forces on the trailer will be the applied force

F(t), the spring forces and and the damping forces and as shown in Fig. 6.4(b). The

external forces on the compound pendulum will be the applied torque and the gravitational

force mg, as shown in Fig. 6.4(b). The inertia forces that act on the trailer and the compound pendu-

lum are indicated by the dashed lines in Fig. 6.4(b). Note that the rotational motion of the compound

pendulum about the hinge O induces a radially inward force (toward O) and a normal force

(perpendicular to OC) as shown in Fig. 6.4(b). The application of Newton s second law for

translatory motion in the horizontal direction gives

(E.1) Mx
$
+ mx

$
+ m 

l

2
 u

$

 cos u - m 

l

2
 u
 #2 sin u =  - k1x - k2x - c1x

 #
- c2x 

#
+ F(t)

m 
l
2 u

$
m 

l
2 u

 #2

Mt(t)

c2x 
#
,c1x

 #k2x,k1x

u

$

(t),x
$
(t)u

 #
(t),

x 
#
(t)u(t),

u(t)
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Similarly the application of Newton s second law for rotational motion about hinge O yields

(E.2)

Notes:

1. The equations of motion, Eqs. (E.1) and (E.2), can be seen to be nonlinear due to the presence

of the terms involving and 

2. Equations (E.1) and (E.2) can be linearized if the term involving is assumed negligibly

small and the displacements are assumed small so that and The linearized

equations can be derived as

(E.3) + (c1 + c2) x 
#
= F(t)

 (M + m)x
$
+ +m 

l

2
*u$ + (k1 + k2)x

sin u L u.cos u L 1
(u

 #
)2 sin u

(u
 #
)2 sin u. sin u, cos u,

+m 

l

2
 u

$*  

l

2
+ +m 

l2

12
*  u

$

+ (mx
$
) 

l

2
 cos u = -  (mg) 

l

2
 sin u + Mt(t)

x(t), F(t)k1

c1

k2

c2

Trailer, mass M

O

C

Mt(t)

u(t)

Compound pendulum,
mass m, length l

l
2

y

(a)

(b)

k1x

 x, x, x, F(t)

c1x

k2x

c2x

(M  m)g

2

(M  m)g

2

Mg

mg

Mx

mx

O

C Jcu

 u, u, u, Mt(t)

m
2

2

m u

u

l

l

2

FIGURE 6.4 Compound pendulum and trailer system.
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and

(E.4)

*

6.4 Influence Coefficients

The equations of motion of a multidegree-of-freedom system can also be written in terms of

influence coefficients, which are extensively used in structural engineering. Basically, one set

of influence coefficients can be associated with each of the matrices involved in the equations

of motion. The influence coefficients associated with the stiffness and mass matrices are,

respectively, known as the stiffness and inertia influence coefficients. In some cases, it is more

convenient to rewrite the equations of motion using the inverse of the stiffness matrix (known

as the flexibility matrix) or the inverse of the mass matrix. The influence coefficients corre-

sponding to the inverse stiffness matrix are called the flexibility influence coefficients, and

those corresponding to the inverse mass matrix are known as the inverse inertia coefficients.

+ml

2
*  x
$
+ +ml2

3
*  u

$

+ +mgl

2
*  u = Mt(t)

6.4.1

Stiffness

Influence

Coefficients

For a simple linear spring, the force necessary to cause a unit elongation is called the stiff-

ness of the spring. In more complex systems, we can express the relation between the dis-

placement at a point and the forces acting at various other points of the system by means of

stiffness influence coefficients. The stiffness influence coefficient, denoted as is defined

as the force at point i due to a unit displacement at point j when all the points other than the

point j are fixed. Using this definition, for the spring-mass system shown in Fig. 6.5, the

total force at point i, can be found by summing up the forces due to all displacements

as

(6.12)Fi = a
n

j=1
 kij xj,  i = 1, 2, Á , n

xj ( j = 1, 2, Á , n)
Fi,

kij,

m1 m2 mi mj mn

k1

x1

F1(t)

k2 ki kj kn kn*1

ki(xi + xi+1)

F2(t) Fi(t)

Fi(t)

mi

Fj(t) Fn(t)

Point 1
x2

Point 2
xi

Point i
xj

Point j
xn

Point n

ki * 1(xi*1 + xi)

(a)

(b)

*xi, * xi

FIGURE 6.5 Multidegree-of-freedom spring-mass system.
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Equation (6.12) can be stated in matrix form as

(6.13)

where and are the displacement and force vectors defined in Eq. (6.7) and [k] is the

stiffness matrix given by

(6.14)

The following aspects of stiffness influence coefficients are to be noted:

1. Since the force required at point i to cause a unit deflection at point j and zero deflection

at all other points is the same as the force required at point j to cause a unit deflection at

point i and zero deflection at all other points (Maxwell s reciprocity theorem [6.1]), we

have 

2. The stiffness influence coefficients can be calculated by applying the principles of sta-

tics and solid mechanics.

3. The stiffness influence coefficients for torsional systems can be defined in terms of

unit angular displacement and the torque that causes the angular displacement. For

example, in a multirotor torsional system, can be defined as the torque at point i

(rotor i) due to a unit angular displacement at point j and zero angular displacement at

all other points.

The stiffness influence coefficients of a multidegree-of-freedom system can be determined

as follows:

1. Assume a value of one for the displacement ( to start with) and a value of zero

for all other displacements By definition, the set of

forces will maintain the system in the assumed configuration

Then the static equilib-

rium equations are written for each mass and the resulting set of n equations solved to

find the n influence coefficients 

2. After completing step 1 for the procedure is repeated for 

The following examples illustrate the procedure.

j = 2, 3, Á , n.j = 1,

kij (i = 1, 2, Á , n).

(xj = 1, x1 = x2 = Á = xj-1 = xj+1 = Á = xn = 0).
kij (i = 1, 2, Á , n)

x1, x2, Á , xj-1, xj+1, Á , xn.
j = 1xj

kij

kij = kji.

[k] = Dk11 k12
Á k1n

k21 k22
Á k2n

o

kn1 kn2
Á knn

T
F
!

x
!

F
!
= [k]x

!

E X A M P L E  6 . 3

Stiffness Influence Coefficients

Find the stiffness influence coefficients of the system shown in Fig. 6.6(a).

Solution:

Approach: Use the definition of and static equilibrium equations.

Let and denote the displacements of the masses and respectively. The

stiffness influence coefficients of the system can be determined in terms of the spring stiffnesseskij

m3,m1, m2,x3x1, x2,
kij
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m1 m2

x1
k1 k2 k3

x2

m3

x3

(a)

m1 m2

x1 + 1 x2 + 0 x3 + 0
k1 k2

k11 k21 k31

m3

k3

(b)

m1 m2

x1 + 0 x2 + 1 x3 + 0
k1 k2

k12 k22 k32

m3

k3

(d)

m1 m2

x1 + 0 x2 + 0 x3 + 1
k1 k2

k13 k23 k33

m3

k3

(f)

m1 m2

k1x1

+ k1

k2(x2 * x1)

k11 k21 k31

m3

k3(x3 * x2)

(c)

+ *k2 + 0

m1 m2

k1x1

+ 0

k2(x2 * x1)

k12 k22 k32

m3

k3(x3 * x2)

(e)

+ k2 + *k3

m1 m2

k1x1

+ 0

k2(x2 * x1)

k13 k23 k33

m3

k3(x3 * x2)

(g)

+ 0 + k3

FIGURE 6.6 Determination of stiffness influence coefficients.



6.4 INFLUENCE COEFFICIENTS 565

and as follows. First, we set the displacement of equal to one and the dis-

placements of and equal to zero as shown in Fig. 6.6(b). The set of forces

is assumed to maintain the system in this configuration. The free-body diagrams of

the masses corresponding to the configuration of Fig. 6.6(b) are indicated in Fig. 6.6(c). The equilib-

rium of forces for the masses and in the horizontal direction yields

(E.1)

(E.2)

(E.3)

The solution of Eqs. (E.1) to (E.3) gives

(E.4)

Next the displacements of the masses are assumed as and as shown in

Fig. 6.6(d). Since the forces are assumed to maintain the system in this configura-

tion, the free-body diagrams of the masses can be developed as indicated in Fig. 6.6(e). The force

equilibrium equations of the masses are:

(E.5)

(E.6)

(E.7)

The solution of Eqs. (E.5) to (E.7) yields

(E.8)

Finally the set of forces is assumed to maintain the system with and

(Fig. 6.6(f)). The free-body diagrams of the various masses in this configuration are shown in

Fig. 6.6(g), and the force equilibrium equations lead to

(E.9)

(E.10)

(E.11)

The solution of Eqs. (E.9) to (E.11) yields

(E.12)

Thus the stiffness matrix of the system is given by

(E.13)

*

[k] = C (k1 + k2) -  k2 0

-  k2 (k2 + k3) -  k3

0  -  k3 k3

S

k13 = 0,         k23 = -
 
k3,         k33 = k3

Mass m3: k33 = k3

 Mass m2: k23 + k3 = 0

Mass m1: k13 = 0

x3 = 1
x1 = 0, x2 = 0,ki3  (i = 1, 2, 3)

k12 = -
 
k2,         k22 = k2 + k3,         k32 = -

 
k3

Mass m3: k32 = -
 
k3

 Mass m2: k22 - k3 = k2

 Mass m1: k12 + k2 = 0

ki2 (i = 1, 2, 3)
x3 = 0,x1 = 0, x2 = 1,

k11 = k1 + k2,         k21 = -
 
k2,         k31 = 0

 Mass m3: k31 = 0

 Mass m2: k21 = -
 
k2

Mass m1: k1 = -
 
k2 + k11

m3m1, m2,

ki1 (i = 1, 2, 3)
(x2 = x3 = 0),m3m2

(x1 = 1)m1k3k1, k2,
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E X A M P L E  6 . 4

Stiffness Matrix of a Frame

Determine the stiffness matrix of the frame shown in Fig. 6.7(a). Neglect the effect of axial stiffness

of the members AB and BC.

Solution: Since the segments AB and BC of the frame can be considered as beams, the beam force-

deflection formulas can be used to generate the stiffness matrix of the frame. The forces necessary to

cause a displacement along one coordinate while maintaining zero displacements along other

coordinates of a beam are indicated in Fig. 6.7(b) [6.1, 6.8]. In Fig. 6.7(a), the ends A and C are fixed

and hence the joint B will have three possible displacements x, y, and as indicated. The forces

necessary to maintain a unit displacement along x direction and zero displacement along y and 

directions at the joint B are given by (from Fig. 6.7(b))

Similarly, when a unit displacement is given along y direction at joint B with zero displacements along

x and directions, the forces required to maintain the configuration can be found from Fig. 6.7(b) as

Finally, the forces necessary to maintain a unit displacement along direction and zero displace-

ments along x and y directions at joint B can be seen, from Fig. 6.7(b), as

 Mu = +4 EI

l
*

BC

+ +4 EI

l
*

BA

=
2 EI

l
+

8 EI

l
=

10 EI

l

 Fx = + 6 EI

l2
*

BC

=
3 EI

2 l2
, Fy = -

 
+6 EI

l2
*

BA

= -  

12 EI

l3

u

Fx = 0,         Fy = + 12 EI

l3
*

BA

=
24 EI

l3
, Mu = -  + 6 EI

l2
*

BA

= -  

12 EI

l2

u

Fx = + 12EI

l3
*

BC

=
3EI

2 l3
,    Fy = 0,          Mu = +6EI

l2
*

BC

=
3EI

2 l2

u

u,

A B

y

x

C

E, 2I, l

E, I, 2l

E, I, l

w1

u1
u

u1

F1

F1 +

M1

w2
u2

F2

M2
12EIw1

l3
F2 +

*12EIw1

l3

F2 +
*6EIu1

l2

w1M1 +

6EIw1

l2

F1 +

6EIu1

l2

M1 +

4EIu1

l

M2 +

6EIw1

l2

M2 +
2EIu1

l

(a) (b)

FIGURE 6.7 Stiffness matrix of a frame.
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Thus the stiffness matrix, [k], is given by

where

*

F
!
= c Fx

Fy

Mu

s ,          x
!
= c x

y

u

s ,          [k] =
EI

l3
 E 3

2
0

3l

2

0 24  -12l

3l

2
-12l 10l2

U
F
!
= [k]x

!

6.4.2
Flexibility
Influence
Coefficients

As seen in Examples 6.3 and 6.4, the computation of stiffness influence coefficients

requires the application of the principles of statics and some algebraic manipulation. In

fact, the generation of n stiffness influence coefficients for any specific j

requires the solution of n simultaneous linear equations. Thus n sets of linear equations

(n equations in each set) are to be solved to generate all the stiffness influence coefficients

of an n-degree-of-freedom system. This implies a significant computational effort for large

values of n. The generation of the flexibility influence coefficients, on the other hand,

proves to be simpler and more convenient. To illustrate the concept, consider again the

spring-mass system shown in Fig. 6.5.

Let the system be acted on by just one force and let the displacement at point i

(i.e., mass ) due to be The flexibility influence coefficient, denoted by is

defined as the deflection at point i due to a unit load at point j. Since the deflection

increases proportionately with the load for a linear system, we have

(6.15)

If several forces act at different points of the system, the total deflec-

tion at any point i can be found by summing up the contributions of all forces 

(6.16)

Equation (6.16) can be expressed in matrix form as

(6.17)

where and are the displacement and force vectors defined in Eq. (6.7) and [a] is the

flexibility matrix given by

(6.18)[a] = Da11 a12
Á a1n

a21 a22
Á a2n

o

an1 an2
Á ann

T
F
!

x:

x: = [a] F
!

xi = a
n

j=1
 xij = a

n

j=1
 aijFj, i = 1, 2, Á , n

Fj: 
Fj   

(j = 1, 2, Á , n)

xij = aijFj

aij,xij.Fjmi

Fj,

k1j, k2j, Á , knj
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The following characteristics of flexibility influence coefficients can be noted:

1. An examination of Eqs. (6.17) and (6.13) indicates that the flexibility and stiffness

matrices are related. If we substitute Eq. (6.13) into Eq. (6.17), we obtain

(6.19)

from which we can obtain the relation

(6.20)

where [I] denotes the unit matrix. Equation (6.20) is equivalent to

(6.21)

That is, the stiffness and flexibility matrices are the inverse of one another. The use of

dynamic stiffness influence coefficients in the vibration of nonuniform beams is dis-

cussed in reference [6.10].

2. Since the deflection at point i due to a unit load at point j is the same as the deflection

at point j due to a unit load at point i for a linear system (Maxwell s reciprocity theo-

rem [6.1]), we have 

3. The flexibility influence coefficients of a torsional system can be defined in terms of

unit torque and the angular deflection it causes. For example, in a multirotor torsional

system, can be defined as the angular deflection of point i (rotor i) due to a unit

torque at point j (rotor j).

The flexibility influence coefficients of a multidegree-of-freedom system can be deter-

mined as follows:

1. Assume a unit load at point j ( to start with). By definition, the displacements of

the various points resulting from this load give the flexibility influ-

ence coefficients, Thus can be found by applying the simple

principles of statics and solid mechanics.

2. After completing Step 1 for the procedure is repeated for 

3. Instead of applying Steps 1 and 2, the flexibility matrix, [a], can be determined by

finding the inverse of the stiffness matrix, [k], if the stiffness matrix is available.

The following examples illustrate the procedure.

j = 2, 3, Á , n.j = 1,

aijaij, i = 1, 2, Á , n.
i (i = 1, 2, Á , n)

j = 1

aij

aij = aji.

[k] = [a] 
- 1, [a] = [k] 

- 1

[a][k] = [I]

x: = [a] F
!

= [a][k] x:

E X A M P L E  6 . 5
Flexibility Influence Coefficients

Find the flexibility influence coefficients of the system shown in Fig. 6.8(a).

Solution: Let and denote the displacements of the masses and respectively.

The flexibility influence coefficients of the system can be determined in terms of the spring

stiffnesses and as follows. Apply a unit force at mass and no force at other masses

as shown in Fig. 6.8(b). The resulting deflections of the masses andm1, m2,(F1 = 1, F2 = F3 = 0),
m1k3k1, k2,

aij

m3,m1, m2,x3x1, x2,
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m1 m2

x1
k1 k2 k3

x2

m3

x3

(a)

m1 m2

x1 + a11 x2 + a21 x3 + a31
k1 k2

F1 + 1 F2 + 0 F3 + 0

F1 + 0 F2 + 1 F3 + 0

F1 + 0 F2 + 0 F3 + 1

F1 + 1 F2 + 0 F3 + 0

m3

k3

(b)

m1 m2

x1 + a12 x2 + a22 x3 + a32

x1 + a13 x2 + a23 x3 + a33

k1 k2

m3

k3

(d)

m1 m2

k1 k2

m3

k3

(f)

m1 m2k1a11 k2(a21 * a11) k3(a31 * a21)

F1 + 0 F2 + 1 F3 + 0

k1a12 k2(a22 * a12) k3(a32 * a22)

F1 + 0 F2 + 0 F3 + 1

k1a13 k2(a23 * a13) k3(a33 * a 23)

m3

(c)

m1 m2 m3

(e)

m1 m2 m3

(g)

FIGURE 6.8 Determination of flexibility influence coefficients.
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( and ) are, by definition, and respectively (see Fig. 6.8b). The free-body

diagrams of the masses are shown in Fig. 6.8(c). The equilibrium of forces in the horizontal direction

for the various masses gives the following:

(E.1)

(E.2)

(E.3)

The solution of Eqs. (E.1) to (E.3) yields

(E.4)

Next, we apply a unit force at mass and no force at masses and as shown in Fig. 6.8(d).

These forces cause the masses and to deflect by and 

respectively (by definition of ), as shown in Fig. 6.8(d). The free-body diagrams of the masses,

shown in Fig. 6.8(e), yield the following equilibrium equations:

(E.5)

(E.6)

(E.7)

The solution of Eqs. (E.5) to (E.7) gives

(E.8)

Finally, when we apply a unit force to mass and no force to masses and the masses deflect

by and as shown in Fig. 6.8(f). The resulting free-body diagrams of

the various masses (Fig. 6.8(g)) yield the following equilibrium equations:

(E.9)

(E.10)

(E.11)

The solution of Eqs. (E.9) to (E.11) gives the flexibility influence coefficients as

(E.12)

It can be verified that the stiffness matrix of the system, given by Eq. (E.13) of Example 6.3, can also

be found from the relation 

*

[k] = [a] 
-

 
1.

a13 =
1

k1
, a23 =

1

k1
+

1

k2
, a33 =

1

k1
+

1

k2
+

1

k3

ai3

 Mass m3: k3(a33 - a23) = 1

 Mass m2: k2(a23 - a13) = k3(a33 - a23)

Mass m1: k1a13 = k2(a23 - a13)

x3 = a33,x1 = a13, x2 = a23,
m2,m1m3

a12 =
1

k1
,           a22 =

1

k1
+

1

k2
,          a32 =

1

k1
+

1

k2

 Mass m3: k3(a32 - a22) = 0

 Mass m2: k2(a22 - a12) = k3(a32 - a22) + 1

Mass m1: k1(a12) = k2(a22 - a12)

ai 2

x3 = a32,x1 = a12, x2 = a22,m3m1, m2,
m3,m1m2

a11 =
1

k1
, a21 =

1

k1
, a31 =

1

k1

Mass m3: k3(a31 - a21) = 0

 Mass m2: k2(a21 - a11) = k3(a31 - a21)

Mass m1: k1a11 = k2(a21 - a11) + 1

a31,a11, a21,x3x1, x2,m3
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E X A M P L E  6 . 6
Flexibility Matrix of a Beam

Derive the flexibility matrix of the weightless beam shown in Fig. 6.9(a). The beam is simply sup-

ported at both ends, and the three masses are placed at equal intervals. Assume the beam to be uni-

form with stiffness EI.

Solution: Let and denote the total transverse deflection of the masses and 

respectively. From the known formula for the deflection of a pinned-pinned beam [6.2], the influence

coefficients can be found by applying a unit load at the location of and zero load

at the locations of and (see Fig. 6.9(b)):

(E.1)

Similarly, by applying a unit load at the locations of and separately (with zero load at other

locations), we obtain

(E.2)

and

(E.3)

Thus the flexibility matrix of the system is given by

(E.4)[a] =

l3

768EI
 C 9 11 7

11 16 11

7 11 9

S

a31 = a13 =
7

768
  

l3

EI
,  a32 = a23 =

11

768
  

l3

EI
,  a33 =

9

768
  

l3

EI

a21 = a12 =

11

768
  

l3

EI
,  a22 =

1

48
  

l3

EI
,  a23 =

11

768
  

l3

EI

m3m2

a11 =
9

768
  

l3

EI
,  a12 =

11

768
  

l3

EI
,  a13 =

7

768
  

l3

EI

m3m2

m1a1j(j = 1, 2, 3)

m3,m1, m2,x3x1, x2,

F1 * 1

a11

x1(t) x2(t) x3(t)

l

a21
a31

F2 * 1

a12 a22
a32

F3 * 1

a13 a23
a33

(b)(a)

m1 m2 m3

l

4
l

4
l

4
l

4

FIGURE 6.9 Beam deflections.

*
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The elements of the mass matrix, are known as the inertia influence coefficients.

Although it is more convenient to derive the inertia influence coefficients from the expres-

sion for kinetic energy of the system (see Section 6.5), the coefficients can be computed

using the impulse-momentum relations. The inertia influence coefficients 

are defined as the set of impulses applied at points respectively, to produce a

unit velocity at point j and zero velocity at every other point (that is, 

). Thus, for a multidegree-of-freedom system, the total impulse

at point can be found by summing up the impulses causing the velocities 

as

(6.22)

Equation (6.22) can be stated in matrix form as

(6.23)

where and are the velocity and impulse vectors given by

(6.24)

and [m] is the mass matrix given by

(6.25)

It can be verified easily that the inertia influence coefficients are symmetric for a linear

system that is, The following procedure can be used to derive the inertia

influence coefficients of a multidegree-of-freedom system.

1. Assume that a set of impulses are applied at various points so as

to produce a unit velocity at point j ( with to start with) and a zero

velocity at all other points By defini-

tion, the set of impulses denote the inertia influence coefficients

mij  (i = 1, 2, Á , n).

fij (i = 1, 2, Á , n)

(x 
#
1 = x 

#
2 =

Á x 
#
j-1 = x 

#
j+1 =

Á =  x 
#
n = 0).

j = 1x 
#
j = 1

i (i = 1, 2, Á , n)fij

mij = mji.

[m] = Fm11 m12
Á m1n

m21 m22
Á m2n

# # Á #

# # Á #

# # Á #

mn1 mn2
Á mnn

V

x:
#
 
= f x 

#
1

x 
#
2

#

#

#

x 
#
n

v ,          F
:

= f F1

F2

#

#

#

F n

v
F
:

x:
#

F
:

= [m]x
!.

Fi = a
n

j=1
 mij x

 #
j

1, 2, Á , n)
x 
#
j 
(j =i, Fi,

x 
#
j-1 = x 

#
j+1 =

Á =  x 
#
n = 0

x 
#
j = 1, x 

#
1 = x 

#
2 =

Á =
1, 2, Á , n,

m1j, m2j, Á , mnj

mij

mij,6.4.3

Inertia Influence

Coefficients
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2. After completing step 1 for the procedure is repeated for 

Note that if denotes an angular coordinate, then represents an angular velocity

and indicates an angular impulse. The following example illustrates the procedure of

generating mij.
Fj

x 
#

jxj

j = 2, 3, Á , n.j = 1,

E X A M P L E  6 . 7

Inertia Influence Coefficients

Find the inertia influence coefficients of the system shown in Fig. 6.4(a).

Solution:

Approach: Use the definition of along with impulse-momentum relations.

Let x(t) and denote the coordinates to define the linear and angular positions of the trailer

(M) and the compound pendulum (m). To derive the inertia influence coefficients, impulses of mag-

nitudes and are applied along the directions x(t) and to result in the velocities and

Then the linear impulse-linear momentum equation gives

(E.1)

and the angular impulse-angular momentum equation (about O) yields

(E.2)

Next, impulses of magnitudes and are applied along the directions x(t) and to obtain

the velocities and Then the linear impulse-linear momentum relation provides

(E.3)

and the angular impulse-angular momentum equation (about O) gives

(E.4)

Thus the mass or inertia matrix of the system is given by

(E.5)

*

[m] = DM + m
ml

2

ml

2

ml2

3

T

m22 = ¢ml2

3
 (1)

m12 = m (1) a l

2
b

u
 #
= 1.x 

#
= 0

u(t)m22m12

m21 = m(1) 

l

2

m11 = (M + m)(1)

u
 #
= 0.

x 
#
= 1u(t)m21m11

u(t)
mij
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6.13 Free Vibration of Undamped Systems
The equation of motion for the free vibration of an undamped system can be expressed in

matrix form as

(6.95)

The most general solution of Eq. (6.95) can be expressed as a linear combination of all

possible solutions given by Eqs. (6.56) and (6.62) as

(6.96)

where is the modal vector and is the corresponding natural frequency, and 

and are constants. The constants and can be evaluated from the

specified initial conditions of the system. If

(6.97)

denote the initial displacements and velocities given to the system, Eqs. (6.96) give

(6.98)

(6.99)

Equations (6.98) and (6.99) represent, in scalar form, 2n simultaneous equations which can

be solved to find the n values of and n values of fi (i = 1, 2, Á , n).Ai (i = 1, 2, Á , n)

x
#
:

(0) = -a
n

i=1
 X
!
(i)Aivi sin fi

 x:(0) = a
n

i=1
 X
!
(i)Ai cos fi

x:(0) = f x1(0)

x2(0)

xn(0)

v and x
#
:

(0) = f x 
#
1(0)

x 
#
2(0)

x 
#
n(0)

v
fi (i = 1, 2, Á , n)Aifi

AiviithX
!
(i)

x:(t) = a
n

i=1
 X
!
(i)Ai cos(vit + fi)

[m]x
$
:

+ [k] x
:

= 0
!

E X A M P L E  6 . 1 5
Free-Vibration Analysis of a Spring-Mass System

Find the free-vibration response of the spring-mass system shown in Fig. 6.12 corresponding to the

initial conditions Assume that 

and for 

Solution:

Approach: Assume free-vibration response as a sum of natural modes.

i = 1, 2, 3.mi = m
ki = kx 

#
i(0) = 0 (i = 1, 2, 3), x1(0) = x10, x2(0) = x3(0) = 0.
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The natural frequencies and mode shapes of the system are given by (see Example 6.11):

where the first component of each mode shape is assumed as unity for simplicity. The application of

the initial conditions, Eqs. (6.98) and (6.99), leads to

(E.1)

(E.2)

(E.3)

(E.4)

(E.5)

(E.6)

The solution of Eqs. (E.1) to (E.6) is given by9

and Thus the free-vibration solution of the system can be expressed as

(E.7) + 0.3493 cos¢1.8025 A
k

m
  t R

 + 0.5431 cos¢1.2471 A
k

m
  t

 x1(t) = x10 B0.1076 cos¢0.44504 A
k

m
  t

f3 = 0.f2 = 0,f1 = 0,
A3 = 0.3493x10,A2 = 0.5431x10,A1 = 0.1076x10,

 -  1.0 A
k

m
 A1 sin f1 + 1.0 A

k

m
 A2 sin f2 - 1.0 A

k

m
 A3 sin f3 = 0

 -  0.80192 A
k

m
 A1 sin f1 - 0.55496 A

k

m
 A2 sin f2 + 2.2474 A

k

m
 A3 sin f3 = 0

 -  0.44504 A
k

m
 A1 sin f1 - 1.2471 A

k

m
 A2 sin f2 - 1.8025 A

k

m
 A3 sin f3 = 0

 2.2470A1 cos f1 - 0.8020A2 cos f2 + 0.5544A3 cos f3 = 0

 1.8019A1 cos f1 + 0.4450A2 cos f2 - 1.2468A3 cos f3 = 0

 A1 cos f1 + A2 cos f2 + A3 cos f3 = x10

 X
!
(1)

= c 1.0

1.8019

2.2470

s ,  X
!
(2)

= c  1.0

 0.4450

-0.8020

s ,  X
!
(3)

= c  1.0

-1.2468

 0.5544

s

 v1 = 0.44504 A
k

m
,  v2 = 1.2471 A

k

m
,  v3 = 1.8025 A

k

m

9Note that Eqs. (E.1) to (E.3) can be considered as a system of linear equations in the unknowns 

and while Eqs. (E.4) to (E.6) can be considered as a set of linear equations in the unknowns

A
k

m
 A1 sin f1,  A

k

m
 A2 sin f2,  and A

k

m
 A3 sin f3.

A3 cos f3,A2 cos f2,
A1 cos f1,
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(E.8)

(E.9)

*

6.14 Forced Vibration of Undamped Systems Using Modal Analysis
When external forces act on a multidegree-of-freedom system, the system undergoes

forced vibration. For a system with n coordinates or degrees of freedom, the governing

equations of motion are a set of n coupled ordinary differential equations of second order.

The solution of these equations becomes more complex when the degree of freedom of the

system (n) is large and/or when the forcing functions are nonperiodic.10 In such cases, a

more convenient method known as modal analysis can be used to solve the problem. In

this method, the expansion theorem is used, and the displacements of the masses are

expressed as a linear combination of the normal modes of the system. This linear transfor-

mation uncouples the equations of motion so that we obtain a set of n uncoupled differen-

tial equations of second order. The solution of these equations, which is equivalent to the

solution of the equations of n single-degree-of-freedom systems, can be readily obtained.

We shall now consider the procedure of modal analysis.

Modal Analysis. The equations of motion of a multidegree-of-freedom system under

external forces are given by

(6.100)[m]x
$
:

+ [k] x: = F
!

 + 0.1937 cos¢1.8025 A
k

m
  t R

 - 0.4356 cos¢1.2471 A
k

m
  t

 x3(t) = x10B0.2418 cos¢0.44504 A
k

m
  t

 - 0.4355 cos¢1.8025 A
k

m
  t R

 + 0.2417 cos¢1.2471 A
k

m
  t

 x2(t) = x10 B0.1939 cos¢0.44504 A
k

m
  t

10The dynamic response of multidegree-of-freedom systems with statistical properties is considered in reference [6.15].
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where is the vector of arbitrary external forces. To solve Eq. (6.100) by modal analysis,

it is necessary first to solve the eigenvalue problem.

(6.101)

and find the natural frequencies and the corresponding normal modes

According to the expansion theorem, the solution vector of Eq. (6.100)

can be expressed by a linear combination of the normal modes

(6.102)

where are time-dependent generalized coordinates, also known as

the principal coordinates or modal participation coefficients. By defining a modal matrix [X]

in which the jth column is the vector is,

(6.103)

Eq. (6.102) can be rewritten as

(6.104)

where

(6.105)

Since [X] is not a function of time, we obtain from Eq. (6.104)

(6.106)

Using Eqs. (6.104) and (6.106), we can write Eq. (6.100) as

(6.107)

Premultiplying Eq. (6.107) throughout by we obtain

(6.108)

If the normal modes are normalized according to Eqs. (6.74) and (6.75), we have

(6.109)

(6.110) [X]T[k][X] = [av2R]

 [X]T[m][X] = [I]

[X]T[m][X] q
$
:

+ [X]T[k][X] q: = [X]T F
!

[X]T,

[m][X] q
$
:

+ [k][X] q: = F
!

x
$
:

(t) = [X] q
$
:

(t)

q
!
(t) = d q1(t)

q2(t)

o

qn(t)

t
x:(t) = [X] q:(t)

[X] = [X
!
(1)X

!
(2) Á  X

!
(n)]

X
!
(j) that

q1(t), q2(t), Á , qn(t)

x
:

(t) = q1(t)X
!
(1) + q2(t)X

!
(2) + Á + qn(t)X

!
(n)

X
!
(1), X

!
(2), Á , X

!
(n).

v1, v2, Á , vn

v
2[m]X

!
= [k]X

!

F
!
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By defining the vector of generalized forces associated with the generalized coordi-

nates as

(6.111)

Eq. (6.108) can be expressed, using Eqs. (6.109) and (6.110), as

(6.112)

Equation (6.112) denotes a set of n uncoupled differential equations of second order11

(6.113)

It can be seen that Eqs. (6.113) have precisely the form of the differential equation describing

the motion of an undamped single-degree-of-freedom system. The solution of Eqs. (6.113)

can be expressed (see Eq. (4.31)) as

(6.114)

The initial generalized displacements and the initial generalized velocities can be

obtained from the initial values of the physical displacements and physical velocities

as (see Problem 6.94):

(6.115)

(6.116)q
!#
(0) = [X]T[m]x

!#
(0)

q
!
(0) = [X]T[m]x

!
(0)

x
#
i(0)

xi(0)
q
#
i(0)qi(0)

 i = 1, 2, Á , n

 +
1

vi
 3

t

0

Qi(t) sin vi (t - t)dt,

 qi(t) = qi(0) cos vit + ¢q 
#
(0)

vi
sin vit

q
$

i(t) + vi
2qi(t) = Qi(t),  i = 1, 2, Á , n

q
$
:

(t) + [av2R] q
:

(t) = Q
!
(t)

Q
!
(t) = [X]T F

!
(t)

q:(t)
Q
!
(t)

11It is possible to approximate the solution vector by only the first modal vectors (instead of n vec-

tors as in Eq. (6.102)):

where

This leads to only r uncoupled differential equations

instead of n equations. The resulting solution will be an approximate solution. This procedure is called the

mode displacement method. An alternate procedure, mode acceleration method, for finding an approximate solu-

tion is indicated in Problem 6.92.

x
!
(t)

q
$

i(t) + vi
2qi(t) = Qi(t),  i = 1, 2, Á , r

[X] = [X
!
(1) X

!
(2) Á  X

!#
(r)] and q

!
(t) = d q1(t)

q2(t)

o

qr(t)

t
x
!
(t)

n*1
=
 

[X]
n*r

q
!
(t)

r*1

r (r 6 n)x
!
(t)
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where

Once the generalized displacements are found, using Eqs. (6.114) to (6.116), the

physical displacements can be found with the help of Eq. (6.104).xi(t)
qi(t)

 x
#
:

(0) = d
x 
#
1(0)

x 
#
2(0)

o

x 
#
n(0)

t

 x
:(0) = d

x1(0)

x2(0)

o

xn(0)

t ,

 q
#
:

(0) = d
q 
#
1(0)

q 
#
2(0)

o

q 
#
n(0)

t ,

 q
:

(0) = d
q1(0)

q2(0)

o

qn(0)

t ,

E X A M P L E  6 . 1 6
Free-Vibration Response Using Modal Analysis

Using modal analysis, find the free-vibration response of a two-degree-of-freedom system with equa-

tions of motion

(E.1)

Assume the following data: and

(E.2)

Solution: The natural frequencies and normal modes of the system are given by (see Example 5.3)

 v2 = 2.4495,   X
!
(2) = b 1

-5
rX1

(2)

 v1 = 1.5811,   X
!
(1) = b 1

2
rX1

(1)

x
:

(0) = b x1(0)

x2(0)
r = b 1

0
r ,            x

#
:

(0) = b x 
#
1(0)

x 
#
2(0)

r = b0

0
r

m1 = 10, m2 = 1, k1 = 30, k2 = 5, k3 = 0,

Bm1 0

0 m2
R b x 

$
1

x 
$

2
r + B  k1 + k2 -  k2

-  k2 k2 + k3
R b x1

x2
r = F

!
= b0

0
r
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where and are arbitrary constants. By orthogonalizing the normal modes with respect to the

mass matrix, we can find the values of and as

or 

or 

Thus the modal matrix becomes

(E.3)

Using

(E.4)

Equation (E.1) can be expressed as (see Eq. (6.112)):

(E.5)

where Equation (E.5) can be written in scalar form as

(E.6)

The solution of Eq. (E.6) is given by (see Eq. 2.18):

(E.7)

where and denote the initial values of and respectively. Using the initial conditions

of Eq. (E.2), we can find (see Eqs. (6.115) and (6.116)):

(E.8)

(E.9) q
#
:

(0) = b q
#
10(0)

q
#
20(0)

r = [X]T[m]x
#
:

(0) = b0

0
r

 = B0.2673 0.5346

0.1690  -  0.8450
R B10 0

0 1
R b 1

0
r = b 2.673

1.690
r

 q
:

(0) = b q10(0)

q20(0)
r = [X]T[m] x

:
(0)

q 
#
i(t),qi(t)q

#
i0qi0

qi(t) = qi0 cos vit +
q 
#
i0

vi
 sin vit

q
$

i(t) + vi
2qi(t) = 0,  i = 1, 2

Q
!
(t) = [X]T F

!
= 0

!
.

q
$
:

(t) + [av2R] q:(t) = Q
!
(t) = 0

!

x
:

(t) = [X] q:(t)

[X] = BX
!
(1) X

!
(2)R = B0.2673 0.1690

0.5346  -  0.8450
R

X1
(2) = 0.1690

X
!
(2)T

[m]X
!
(2) = 1Q (X1

(2)
)2 51  -56B10 0

0 1
R b    1

-5
r = 1

X1
(1)

= 0.2673

X
!
(1)T

[m]X
!
(1) = 1Q (X1

(1)
)2 51 26B10 0

0 1
R b 1

2
r = 1

X1
(2)

X1
(1)

X1
(2)

X1
(1)
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Equations (E.7) to (E.9) lead to

(E.10)

(E.11)

Using Eqs. (E.4), we obtain the displacements of the masses and as

or

(E.12)

It can be seen that this solution is identical to the one obtained in Example 5.3 and plotted in

Example 5.17.

*

b x1(t)

x2(t)
r = b 0.7145 cos 1.5811t + 0.2856 cos 2.4495t

1.4280 cos 1.5811t - 1.4280 cos 2.4495t
r

x
:

(t) = B0.2673 0.1690

0.5346  -0.8450
R b 2.673 cos 1.5811t

1.690 cos 2.4495t
r

m2m1

 q2(t) = 1.690 cos 2.4495t

 q1(t) = 2.673 cos 1.5811t

E X A M P L E  6 . 1 7
Forced-Vibration Response of a Forging Hammer

The force acting on the workpiece of the forging hammer shown in Fig. 5.51 due to impact by the ham-

mer can be approximated as a rectangular pulse, as shown in Fig. 6.15(a). Find the resulting vibration

of the system for the following data: mass of the workpiece, anvil and frame mass of

the foundation block stiffness of the elastic pad and stiffness of

the soil Assume the initial displacements and initial velocities of the masses as zero.

Solution: The forging hammer can be modeled as a two-degree-of-freedom system as indicated in

Fig. 6.15(b). The equations of motion of the system can be expressed as

(E.1)[m]x
$
:

+ [k] x
:

= F
!
(t)

(k2) = 75 MN/m.
(k1) = 150 MN/m,(m2) = 250 Mg,

(m1) = 200 Mg,

F1(t), N

25,000

0 0.1
t, s

(a) (b)

m1

m2

k1

k2

x1(t)

x2(t)

F1(t)

FIGURE 6.15 Impact caused by forging hammer.



6.14 FORCED VIBRATION OF UNDAMPED SYSTEMS USING MODAL ANALYSIS 609

where

Natural Frequencies and Mode Shapes: The natural frequencies of the system can be found by

solving the frequency equation

(E.2)

as

The mode shapes can be found as

Orthonormalization of Mode Shapes: The mode shapes are assumed as

where a and b are constants. The constants a and b can be determined by normalizing the vectors

and as

(E.3)

where denotes the modal matrix. Equation (E.3) gives and

which means that the new modal matrix (with normalized mode shapes)

becomes

Response in Terms of Generalized Coordinates: Since the two masses and are at rest at 

the initial conditions are hence Eqs. (6.115) and (6.116)

give Thus the generalized coordinates are given by the solu-

tion of the equations

(E.4)qi(t) =
1

vi
 3
  t

0 
Qi(t) sin vi(t - t) dt, i = 1, 2

q1(0) = q2(0) = q
#
1(0) = q

#
2(0) = 0.

x1(0) = x2(0) = x
#
1(0) = x

#
2(0) = 0,

t = 0,m2m1

[X] = [X
!
(1)X

!
(2)] = B1.6667     1.4907

1.3334  -1.4907
R * 10-3

1.4907 * 10-3,b =
a = 1.6667 * 10-3[X] = [X

!
(1)X

!
(2)]

[X]T [m] [X] = [I]

X
!
(2)X

!
(1)

X
!
(1)

= a b 1

0.8
r and X

!
(2)

= b b 1

-1
r

X
!
(1)

= b 1

0.8
r and X

!
(2)

= b 1

-1
r

v1 = 12.2474 rad/s          and        v2 = 38.7298 rad/s

-v
2[m] + [k] = ` - v

2B2 0

0 2.5
R  105

+ B 150 -150

-150 225
R106 ` = 0

 F
!

(t) = bF1(t)

0
r

 [k] = B k1 -  k1

-  k1 k1 + k2
R = B    150 -150

-150    225
R  MN/m

 [m] = Bm1 0

0 m2
R = B200 0

0 250
R  Mg
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where

(E.5)

or

(E.6)

with for and 0 for Using Eq. (6.104), the displacements

of the masses can be found as

(E.7)

where

(E.8)

Note that the solution given by Eqs. (E.8) is valid for For there is no applied

force, hence the response is given by the free-vibration solution of an undamped single-degree-of-

freedom system (Eq. (2.18)) for and with and and and as

initial conditions for and respectively.

*

6.15 Forced Vibration of Viscously Damped Systems
Modal analysis, as presented in Section 6.14, applies only to undamped systems. In many

cases, the influence of damping upon the response of a vibratory system is minor and can

be disregarded. However, it must be considered if the response of the system is required

for a relatively long period of time compared to the natural periods of the system. Further,

if the frequency of excitation (in the case of a periodic force) is at or near one of the nat-

ural frequencies of the system, damping is of primary importance and must be taken into

account. In general, since the effects are not known in advance, damping must be consid-

ered in the vibration analysis of any system. In this section, we shall consider the equa-

tions of motion of a damped multidegree-of-freedom system and their solution using

Lagrange s equations. If the system has viscous damping, its motion will be resisted by a

force whose magnitude is proportional to that of the velocity but in the opposite direction.

It is convenient to introduce a function R, known as Rayleigh s dissipation function, in

q2(t),q1(t)
q
#
2(0.1)q2(0.1)q

#
1(0.1),q1(0.1)q2(t)q1(t)

t 7 0.1 s,0 0.1 s.

 q2(t) = 0.96223
 t

0 
 sin 38.7298 (t - t) dt = 0.02484 (1 -  cos 38.7298 t)

 q1(t) = 3.40213
 t

0 
sin 12.2474 (t - t) dt = 0.2778 (1 -  cos 12.2474 t)

b x1(t)

x2(t)
r = [X] q

:

(t) = b 1.6667q1(t) + 1.4907q2(t)

1.3334q1(t) - 1.4907q2(t)
r  10-3 m

t 7 0.1 s.0 t 0.1 sF1(t) = 25000 N

 = b 1.6667 * 10-3F1(t)

1.4907 * 10-3F1(t)
r

 bQ1(t)

Q2(t)
r = B1.6667 1.3334

1.4907 -1.4907
R10-3bF1(t)

0
r

Q
!
(t) = [X]T F

!
(t)
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deriving the equations of motion by means of Lagrange s equations [6.7]. This function is

defined as

(6.117)

where the matrix [c] is called the damping matrix and is positive definite, like the mass and

stiffness matrices. Lagrange s equations, in this case [6.8], can be written as

(6.118)

where is the force applied to mass By substituting Eqs. (6.30), (6.34), and (6.117)

into Eq. (6.118), we obtain the equations of motion of a damped multidegree-of-freedom

system in matrix form:

(6.119)

For simplicity, we shall consider a special system for which the damping matrix can be

expressed as a linear combination of the mass and stiffness matrices:

(6.120)

where and are constants. This is known as proportional damping because [c] is pro-

portional to a linear combination of [m] and [k]. By substituting Eq. (6.120) into Eq.

(6.119), we obtain

(6.121)

By expressing the solution vector as a linear combination of the natural modes of the

undamped system, as in the case of Eq. (6.104),

(6.122)

Eq. (6.121) can be rewritten as

(6.123)

Premultiplication of Eq. (6.123) by leads to

(6.124) + [X]T[k][X]q
!
= [X]TF

!

 [X]T[m][X]q
!$
+ [a[X]T[m][X] + b[X]T[k][X]]q

!#

[X]T

 + [k][X]q
!
(t) = F

!
(t)

 [m][X]q
!$
(t) + [a[m] + b[k]][X] q

!#
(t)

x
!
(t) = [X]q

!
(t)

x
!

[m]x
!$
+ [a[m] + b[k]]x

!#
+ [k]x

!
= F

!

ba

[c] = a[m] + b[k]

[m]x
!$
+ [c]x

!#
+ [k]x

!
= F

!

mi.Fi

d

dt
 + 0T
0x
#
i
* -

0T

0xi
+

0R

0x
#
i
+

0V

0xi
= Fi,  i = 1, 2, Á , n

R =
1

2
 x
#
:T[c]x

#
:
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If the eigenvectors are normalized according to Eqs. (6.74) and (6.75), Eq. (6.124)

reduces to

that is,

(6.125)

where is the ith natural frequency of the undamped system and

(6.126)

By writing

(6.127)

where is called the modal damping ratio for the ith normal mode, Eqs. (6.125) can be

rewritten as

(6.128)

It can be seen that each of the n equations represented by this expression is uncoupled from

all of the others. Hence we can find the response of the ith mode in the same manner as that

of a viscously damped single-degree-of-freedom system. The solution of Eqs. (6.128), when

can be expressed as

(6.129)

where

(6.130)vdi = vi21 - zi
2

 i = 1, 2, Á , n

 +
1

vdiL
t

0
 Qi(t)e-zivi(t-t) sin vdi(t - t) dt, 

 + b 1

vdi
 e-zivit sin vdit rq 

#
0(0)

 qi(t) = e-zivitb cos vdit +
zi

21 - zi
2
 sin vdit rqi(0)

zi 6 1,

q 
$

i(t) + 2ziviq
 #

i(t) + vi
2qi(t) = Qi(t),  i = 1, 2, Á , n

zi

a + vi
2b = 2zivi

Q
!
(t) = [X]T F

!
(t)

vi

 i = 1, 2, Á , n

 q 
$

i(t) + (a + vi
2b)q 

#
i(t) + vi

2qi(t) = Qi(t), 

[I] q
$
:

(t) + Ca[I] + b Cav2R D D q
#
:

(t) + Cav2R D q
:

(t) = Q
!
(t)

X
!
(j)
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Note the following aspects of these systems:

1. The identification of the sources and magnitude of damping is difficult in most practical

problems. More than one type of damping Coulomb, viscous, and hysteretic may be

present in the system. In addition, the exact nature of damping, such as linear, quadratic,

cubic or other type of variation, is not known. Even when the source and nature of

damping are known, obtaining the precise magnitude is very difficult. For some practi-

cal systems, experimentally determined damping values may be available for use in

vibration analysis. Some damping, in the form of structural damping, is present in auto-

mobile, aerospace, and machine structures. Damping is introduced deliberately in

certain practical applications such as vehicle suspension systems, aircraft landing

gear, and machine isolation systems. Because the analysis of damped systems

involves lengthy mathematical manipulations, in many vibration studies damping is

either neglected or assumed to be proportional.

2. It has been shown by Caughey [6.9] that the condition given by Eq. (6.120) is suffi-

cient but not necessary for the existence of normal modes in damped systems. The

necessary condition is that the transformation that diagonalizes the damping matrix

also uncouples the coupled equations of motion. This condition is less restrictive than

Eq. (6.120) and covers more possibilities.

3. In the general case of damping, the damping matrix cannot be diagonalized simultane-

ously with the mass and stiffness matrices. In this case, the eigenvalues of the system are

either real and negative or complex with negative real parts. The complex eigenvalues

exist as conjugate pairs: the associated eigenvectors also consist of complex conjugate

pairs. A common procedure for finding the solution of the eigenvalue problem of a

damped system involves the transformation of the n coupled second-order equations of

motion into 2n uncoupled first-order equations [6.6].

4. The error bounds and numerical methods in the modal analysis of dynamic systems

are discussed in references [6.11, 6.12].

E X A M P L E  6 . 1 8
Equations of Motion of a Dynamic System

Derive the equations of motion of the system shown in Fig. 6.16.

Solution:

Approach: Use Lagrange s equations in conjunction with Rayleigh s dissipation function.

The kinetic energy of the system is

(E.1)

The potential energy has the form

(E.2)V =
1

2
 [k1x1

2
+ k2(x2 - x1)

2
+ k3(x3 - x2)

2]

T =
1

2
 (m1x

 #
1
2
+ m2x

 #
2
2
+ m3x

 #
3
2)
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k1

k2

k3

c1

c2

c3

c5

c4

m1

m2

m3

F1(t) x1(t)

x2(t) F2(t)

x3(t) F3(t)

FIGURE 6.16 Three-degree-of-freedom

dynamic system.

and Rayleigh s dissipation function is

(E.3)

Lagrange s equations can be written as

(E.4)

By substituting Eqs. (E.1) to (E.3) into Eq. (E.4), we obtain the differential equations of motion

(E.5)

where

(E.6)

(E.7) [c] = C c1 + c2 + c5 -  c2 -  c5

-  c2 c2 + c3 + c4 -  c3

-  c5 -  c3 c3 + c5

S

 [m] = Cm1 0 0

0 m2 0

0 0 m3

S

[m]x
!$
+ [c]x

!#
+ [k]x

!
= F

!

d

dt
 ¢ 0T

0x 
#
i

-
0T

0xi
+

0R

0x 
#
i
+

0V

0xi
= Fi,  i = 1, 2, 3

R =
1

2
 [c1x

 #
1
2

+ c2(x 
#
2 - x 

#
1)

2
+ c3(x 

#
3 - x 

#
2)2

+ c4x 
#
2
2

+ c5(x 
#
3 - x 

#
1)

2]
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(E.8)

(E.9)

*

 x
!
= c x1(t)

x2(t)

x3(t)

s and F
!
= c F1(t)

F2(t)

F3(t)

s

 [k] = Ck1 + k2 -  k2 0

-  k2 k2 + k3 -  k3

0  -  k3 k3

S

E X A M P L E  6 . 1 9
Steady-State Response of a Forced System

Find the steady-state response of the system shown in Fig. 6.16 when the masses are subjected to the

simple harmonic forces where Assume that 

and the damping ratio in each normal mode is given by

Solution: The (undamped) natural frequencies of the system (see Example 6.11) are given by

(E.1)

and the corresponding [m]-orthonormal mode shapes (see Example 6.12) are given by

(E.2)

Thus the modal vector can be expressed as

(E.3)[X] = [X
!
(1)X

!
(2)X

!
(3)] =

1

2m
 C 0.3280 0.7370 0.5911

0.5911 0.3280  -  0.7370

0.7370  -  0.5911 0.3280

S

 X
!
(3)

=
0.5911

2m
 c   1.0

-  1.2468

  0.5544

s

 X
!
(1)

=
0.3280

2m
 c 1.0

1.8019

2.2470

s ,  X
!
(2)

=
0.7370

2m
 c 1.0

1.4450

-0.8020

s

 v3 = 1.8025 A
k

m

 v2 = 1.2471 A
k

m

 v1 = 0.44504 A
k

m

zi = 0.01, i = 1, 2, 3.
m3 = m, k1 = k2 = k3 = k, c4 = c5 = 0,

m1 = m2 =v = 1.752k/m.F1 = F2 = F3 = F0 cos vt,
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The generalized force vector

(E.4)

can be obtained where

(E.5)

If the generalized coordinates or the modal participation factors for the three principal modes are

denoted as and the equations of motion can be expressed as

(E.6)

The steady-state solution of Eqs. (E.6) can be written as

(E.7)

where

(E.8)

and

(E.9)

By substituting the values given in Eqs. (E.5) and (E.1) into Eqs. (E.8) and (E.9), we obtain

(E.10)

Finally the steady-state response can be found using Eq. (6.122).

*

 q30 = 0.92493 

F02m

k
,  f3 = tan-1(0.33827)

 q20 = 0.31429 

F02m

k
,  f2 = tan-1(-0.02988)

 q10 = 0.57815 

F02m

k
,  f1 = tan-1(-0.00544)

fi = tan-1d 2zi 

v

vi

1 - ¢ v
vi

2
t

qi0 =
Qi0

vi
2

 
1B b 1 - ¢ v

vi

2 r2

+ ¢2zi 

v

vi

2R 1/2

qi(t) = qi0 cos (vt - f),  i = 1, 2, 3

q
$

i(t) + 2ziviq
 #

i(t) + vi
2qi(t) = Qi(t),  i = 1, 2, 3

q3(t),q1(t), q2(t),

Q10 = 1.6561 
F0

2m
,  Q20 = 0.4739 

F0

2m
,  Q30 = 0.1821 

F0

2m

 = c Q10

Q20

Q30

s  cos vt

 Q
!
(t) = [X]T F

!
(t) =

1

2m
 C 0.3280 0.5911 0.7370

0.7370 0.3280 -  0.5911

0.5911 -  0.7370 0.3280

S c F0 cos vt

F0 cos vt

F0 cos vt

s
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John William Strutt, Lord Rayleigh (1842 1919), was an English physicist who
held the positions of professor of experimental physics at Cambridge University,
professor of natural philosophy at the Royal Institution in London, president of the
Royal Society, and chancellor of Cambridge University. His works in optics and

acoustics are well known, with Theory of Sound (1877) considered as a standard
reference even today. The method of computing approximate natural frequencies
of vibrating bodies using an energy approach has become known as Rayleigh s
method. (Courtesy of Applied Mechanics Reviews.)

C H A P T E R  7

Determination of
Natural Frequencies
and Mode Shapes

Chapter Outline

Several methods of determining the natural frequencies and mode shapes of multidegree-

of-freedom systems are outlined in this chapter. Specifically, Dunkerley s formula, Rayleigh s

method, Holzer s method, the matrix iteration method, and Jacobi s method are presented.

Derivation of Dunkerley s formula is based on the fact that higher natural frequencies of

most systems are large compared to their fundamental frequencies. It gives an approximate
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value, always smaller than the exact value, of the fundamental natural frequency.

Rayleigh s method, which is based on Rayleigh s principle, also gives an approximate

value of the fundamental natural frequency, which is always larger than the exact value.

Proof is given of Rayleigh s quotient and its stationariness in the neighborhood of an

eigenvalue. It is also shown that the Rayleigh s quotient is never lower than the first eigen-

value and never higher than the highest eigenvalue. Use of the static deflection curve in

estimating the fundamental natural frequencies of beams and shafts using Rayleigh s

method is presented. Holzer s method, based on a trial-and-error scheme, is presented to

find the natural frequencies of undamped, damped, semidefinite, or branched translational

and torsional systems. The matrix iteration method and its extensions for finding the small-

est, highest, and intermediate natural frequencies are presented. A proof for the conver-

gence of the method to the smallest frequency is given. Jacobi s method, which finds all

the eigenvalues and eigenvectors of real symmetric matrices, is outlined. The standard

eigenvalue problem is defined and the method of deriving it from the general eigenvalue

problem, based on the Choleski decomposition method, is presented. Finally, the use of

MATLAB in finding the eigenvalues and eigenvectors of multidegree-of-freedom systems

is illustrated with several numerical examples.

Learning Objectives

After you have finished studying this chapter, you should be able to do the following:

* Find the approximate fundamental frequency of a composite system in terms of the

natural frequencies of component parts using Dunkerley s formula.

* Understand Rayleigh s principle, and the properties of Rayleigh s quotient, and com-

pute the fundamental natural frequency of a system using Rayleigh s method.

* Find the approximate natural frequencies of vibration and the modal vectors by using

Holzer s method.

* Determine the smallest, intermediate, and highest natural frequencies of a system by

using matrix iteration method and its extensions (using matrix deflation procedure).

* Find all the eigenvalues and eigenvectors of a multidegree-of-freedom system using

Jacobi s method.

* Convert a general eigenvalue problem into a standard eigenvalue problem based on

the Choleski decomposition method.

* Solve eigenvalue problems using MATLAB.

7.1 Introduction

In the preceding chapter, the natural frequencies (eigenvalues) and the natural modes

(eigenvectors) of a multidegree-of-freedom system were found by setting the characteristic

determinant equal to zero. Although this is an exact method, the expansion of the charac-

teristic determinant and the solution of the resulting nth-degree polynomial equation to

obtain the natural frequencies can become quite tedious for large values of n. Several ana-

lytical and numerical methods have been developed to compute the natural frequencies and
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mode shapes of multidegree-of-freedom systems. In this chapter, we shall consider

Dunkerley s formula, Rayleigh s method, Holzer s method, the matrix iteration method,

and Jacobi s method. Dunkerley s formula and Rayleigh s method are useful only for esti-

mating the fundamental natural frequency. Holzer s method is essentially a tabular method

that can be used to find partial or full solutions to eigenvalue problems. The matrix itera-

tion method finds one natural frequency at a time, usually starting from the lowest value.

The method can thus be terminated after finding the required number of natural frequen-

cies and mode shapes. When all the natural frequencies and mode shapes are required,

Jacobi s method can be used; it finds all the eigenvalues and eigenvectors simultaneously.

7.2 Dunkerley s Formula
Dunkerley s formula gives the approximate value of the fundamental frequency of a com-

posite system in terms of the natural frequencies of its component parts. It is derived by

making use of the fact that the higher natural frequencies of most vibratory systems are

large compared to their fundamental frequencies [7.1 7.3]. To derive Dunkerley s formula,

consider a general n-degree-of-freedom system whose eigenvalues can be determined by

solving the frequency equation, Eq. (6.63):

or

(7.1)

For a lumped-mass system with a diagonal mass matrix, Eq. (7.1) becomes

that is,

(7.2)8
¢ -  
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v
2
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a21m1 ¢ -  

1

v
2
+ a22m2

Á a2nmn

o o o

an1m1 an2m2
Á ¢ -  

1

v
2
+ annmn

8 = 0

5 -  

1

v
2

 E1 0 Á 0

0 1 Á 0

o

0 0 Á 1

U + E a11 a12 Á a1n
a21 a22 Á a2n
o

an1 an2 Á ann

U Em1 0 Á 0

0 m2
Á 0

o

0 0 Á mn

U 5 = 0

` - 1

v
2

 [I] + [a][m] ` = 0

- [k] + v
2[m] = 0



7.2 DUNKERLEY S FORMULA 657

The expansion of Eq. (7.2) leads to

(7.3)

This is a polynomial equation of n th degree in Let the roots of Eq. (7.3) be denoted

as Thus

(7.4)

Equating the coefficient of in Eqs. (7.4) and (7.3) gives

(7.5)

In most cases, the higher frequencies are considerably larger than the fun-

damental frequency and so

Thus, Eq. (7.5) can be approximately written as

(7.6)

This equation is known as Dunkerley s formula. The fundamental frequency given by

Eq. (7.6) will always be smaller than the exact value. In some cases, it will be more conve-

nient to rewrite Eq. (7.6) as

(7.7)

where denotes the natural frequency of a single-degree-

of-freedom system consisting of mass and spring of stiffness The

use of Dunkerley s formula for finding the lowest frequency of elastic systems is presented

in references [7.4, 7.5].
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E X A M P L E  7 . 1
Fundamental Frequency of a Beam

Estimate the fundamental natural frequency of a simply supported beam carrying three identical

equally spaced masses, as shown in Fig. 7.1.

Solution: The flexibility influence coefficients (see Example 6.6) required for the application of

Dunkerley s formula are given by

(E.1)

Using Eq. (7.6) thus gives

This value can be compared with the exact value of the fundamental frequency, (see

Problem 6.54)

 4.9326 A
EI

ml3

 v1 M 4.75375 A
EI

ml3

 
1

v1
2
M + 3

256
+

1

48
+

3

256
*  

ml3

EI
= 0.04427 

ml3

EI

m1 = m2 = m3 = m,

a11 = a33 =
3

256
 

l3

EI
, a22 =

1

48
 

l3

EI

1Rayleigh s method for continuous systems is presented in Section 8.7

m1 m2

l

m3

l

4
l

4
l

4
l

4

x1(t) x2(t) x3(t)

FIGURE 7.1 Beam carrying masses.

*

7.3 Rayleigh s Method
Rayleigh s method was presented in Section 2.5 to find the natural frequencies of single-

degree-of-freedom systems. The method can be extended to find the approximate value of

the fundamental natural frequency of a discrete system.1 The method is based on

Rayleigh s principle, which can be stated as follows [7.6]:

The frequency of vibration of a conservative system vibrating about an equilibrium posi-

tion has a stationary value in the neighborhood of a natural mode. This stationary value,

in fact, is a minimum value in the neighborhood of the fundamental natural mode.

We shall now derive an expression for the approximate value of the first natural frequency

of a multidegree-of-freedom system according to Rayleigh s method.
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The kinetic and potential energies of an n-degree-of-freedom discrete system can be

expressed as

(7.8)

(7.9)

To find the natural frequencies, we assume harmonic motion to be

(7.10)

where denotes the vector of amplitudes (mode shape) and represents the natural fre-

quency of vibration. If the system is conservative, the maximum kinetic energy is equal to

the maximum potential energy:

(7.11)

By substituting Eq. (7.10) into Eqs. (7.8) and (7.9), we find

(7.12)

(7.13)

By equating and we obtain2

(7.14)

The right-hand side of Eq. (7.14) is known as Rayleigh s quotient and is denoted as R(X
!

).

v
2
=

X
!
 
T[k]X

!
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2
 x
:  T[k] x

:

 T =
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2
 x
!# T[m]x

!#

2Equation (7.14) can also be obtained from the relation Premultiplying this equation by 

and solving the resulting equation gives Eq. (7.14).

X 

!

 
T[k]X

!
= v

2[m]X
!
.

7.3.1
Properties
of Rayleigh s
Quotient

As stated earlier, has a stationary value when the arbitrary vector is in the neigh-

borhood of any eigenvector To prove this, we express the arbitrary vector in terms

of the normal modes of the system, as

(7.15)

Then
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and

(7.17)

as the cross terms of the form and are zero by the

orthogonality property. Using Eqs. (7.16) and (7.17) and the relation

(7.18)

the Rayleigh s quotient of Eq. (7.14) can be expressed as

(7.19)

If the normal modes are normalized, this equation becomes

(7.20)

If differs little from the eigenvector the coefficient will be much larger than the

remaining coefficients and Eq. (7.20) can be written as

(7.21)

Since where is a small number for all Eq. (7.21) gives

(7.22)

where represents an expression in of the second order or higher. Equation (7.22)

indicates that if the arbitrary vector differs from the eigenvector by a small quantity

of the first order, differs from the eigenvalue by a small quantity of the second

order. This means that Rayleigh s quotient has a stationary value in the neighborhood of an

eigenvector.
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The stationary value is actually a minimum value in the neighborhood of the funda-

mental mode, To see this, let in Eq. (7.21) and write

(7.23)

Since, in general, for Eq. (7.23) leads to

(7.24)

which shows that Rayleigh s quotient is never lower than the first eigenvalue. By proceed-

ing in a similar manner, we can show that

(7.25)

which means that Rayleigh s quotient is never higher than the highest eigenvalue. Thus

Rayleigh s quotient provides an upper bound for and a lower bound for vn
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7.3.2
Computation of
the
Fundamental
Natural
Frequency

Equation (7.14) can be used to find an approximate value of the first natural frequency 

of the system. For this, we select a trial vector to represent the first natural mode and

substitute it on the right-hand side of Eq. (7.14). This yields the approximate value of 

Because Rayleigh s quotient is stationary, remarkably good estimates of can be obtained

even if the trial vector deviates greatly from the true natural mode Obviously, the

estimated value of the fundamental frequency is more accurate if the trial vector 

chosen resembles the true natural mode closely. Rayleigh s method is compared with

Dunkerley s and other methods in Refs. [7.7 7.9].
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E X A M P L E  7 . 2
Fundamental Frequency of a Three-Degree-of-Freedom System

Estimate the fundamental frequency of vibration of the system shown in Fig. 7.2. Assume that

and the mode shape is

X
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= c 1

2

3

s
m1 = m2 = m3 = m, k1 = k2 = k3 = k,
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Solution: The stiffness and mass matrices of the system are

(E.1)

(E.2)

By substituting the assumed mode shape in the expression for Rayleigh s quotient, we obtain

(E.3)
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FIGURE 7.2 Three-

degree-of-freedom

spring-mass system.
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This value is 4.0225 percent larger than the exact value of The exact fundamental

mode shape (see Example 6.10) in this case is

(E.5)

*

X
!
(1)

= c 1.0000

1.8019

2.2470

s

0.44502k/m.

7.3.3
Fundamental
Frequency of
Beams and
Shafts

Although the procedure outlined above is applicable to all discrete systems, a simpler

equation can be derived for the fundamental frequency of the lateral vibration of a beam or

a shaft carrying several masses such as pulleys, gears, or flywheels. In these cases, the sta-

tic deflection curve is used as an approximation of the dynamic deflection curve.

Consider a shaft carrying several masses, as shown in Fig. 7.3. The shaft is assumed to

have negligible mass. The potential energy of the system is the strain energy of the

deflected shaft, which is equal to the work done by the static loads. Thus

(7.26)

where is the static load due to the mass and is the total static deflection of mass

due to all the masses. For harmonic oscillation (free vibration), the maximum kinetic

energy due to the masses is

(7.27)

where is the frequency of oscillation. Equating and we obtain

(7.28)v = b g(m1w1 + m2w2 + Á)

(m1w1
2
+ m2w2

2
+ Á)

r1/2

Tmax,Vmaxv

Tmax =
v

2

2
 (m1w1

2
+ m2w2

2
+ Á)

mi

wimi,mig

Vmax =
1

2
 (m1gw1 + m2gw2 + Á)

l1

w1 w3
w2

l4l2

m1

m2
m3

l3

FIGURE 7.3 Shaft carrying masses.



664 CHAPTER 7 DETERMINATION OF NATURAL FREQUENCIES AND MODE SHAPES

E X A M P L E  7 . 3
Fundamental Frequency of a Shaft with Rotors

Estimate the fundamental frequency of the lateral vibration of a shaft carrying three rotors (masses),

as shown in Fig. 7.3, with 

and The shaft is made of steel with a solid circular cross section of diameter 10 cm.

Solution: From strength of materials, the deflection of the beam shown in Fig. 7.4 due to a static

load P [7.10] is given by

(E.1)

(E.2)

Deflection Due to the Weight of At the location of mass (with and

in Eq. (E.1)):

(E.3)

At the location of (with and in Eq. (E.2)):

(E.4)

At the location of (with and in Eq. (E.2)):

(E.5)

Deflection Due to the Weight of At the location of (with and 

in Eq. (E.1)):

(E.6)w1 =

(50 * 9.81)(6)(1)

6EI(10)
 (100 - 36 - 1) =

3090.15

EI

l = 10 mx = 1 m, b = 6 m,m1m2:

w3 = -

(20 * 9.81)(1)(2)

6EI(10)
 [1 + 64 - 2(10)(8)] =

621.3

EI

l = 10 ma = 1 m, x = 8 m,m3

w2 = -

(20 * 9.81)(1)(6)

6EI(10)
 [1 + 16 - 2(10)(4)] =

1236.06

EI

l = 10 ma = 1 m, x = 4 m,m2

w1 =
(20 * 9.81)(9)(1)

6EI(10)
 (100 - 81 - 1) =

529.74

EI

l = 10 m

x = 1 m, b = 9 m,m1m1:

w(x) = e Pbx

6EIl
 (l2

- b2
- x2);  0 x a

-  

Pa(l - x)

6EIl
 [a2

+ x2
- 2lx]; a x l

l4 = 2 m.
m1 = 20 kg, m2 = 50 kg, m3 = 40 kg, l1 = 1 m, l2 = 3 m, l3 = 4 m,

a b

l

P

x

FIGURE 7.4 Beam under static load.
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At the location of (with and in Eq. (E.1)):

(E.7)

At the location of (with and in Eq. (E.2)):

(E.8)

Deflection Due to the Weight of At the location of (with and in

Eq. (E.1)):

(E.9)

At the location of (with and in Eq. (E.1)):

(E.10)

At the location of (with and in Eq. (E.1)):

(E.11)

The total deflections of the masses and are

Substituting into Eq. (7.28), we find the fundamental natural frequency:

(E.12)

For the shaft, and and hence Eq. (E.12)

gives

*

v = 28.4482 rad/s

I = p(0.1)4/64 = 4.90875 * 10-6 m4E = 2.07 * 1011 N/m2

 = 0.0282222EI

 v = b 9.81(20 * 4862.49 + 50 * 14839.26 + 40 * 9201.78)EI

20 * (4862.49)2
+ 50 * (14839.26)2

+ 40 * (9201.78)2
r 1/2

 w3 = w3 + w3 + w3
Ô
=

9201.78

EI

 w2 = w2 + w2 + w2
Ô
=

14839.26

EI

 w1 = w1 + w1 + w1
Ô
=

4862.49

EI

m3m1, m2,

w3
Ô
=

(40 * 9.81)(2)(8)

6EI(10)
 (100 - 4 - 64) =

3348.48

EI

l = 10 mx = 8 m, b = 2 m,m3

w2
Ô
=

(40 * 9.81)(2)(4)

6EI(10)
 (100 - 4 - 16) =

4185.6

EI

l = 10 mx = 4 m, b = 2 m,m2

w1
Ô
=

(40 * 9.81)(2)(1)

6EI(10)
 (100 - 4 - 1) =

1242.6

EI

l = 10 mx = 1 m, b = 2 m,m1m3:

w3 = -

(50 * 9.81)(4)(2)

6EI(10)
 [16 + 64 - 2(10)(8)] =

5232.0

EI

l = 10 ma = 4 m, x = 8 m,m3

w2 =

(50 * 9.81)(6)(4)

6EI(10)
 (100 - 36 - 16) =

9417.6

EI

l = 10 mx = 4 m, b = 6 m,m2
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7.4 Holzer s Method
Holzer s method is essentially a trial-and-error scheme to find the natural frequencies of

undamped, damped, semidefinite, fixed, or branched vibrating systems involving linear

and angular displacements [7.11, 7.12]. The method can also be programmed for computer

applications. A trial frequency of the system is first assumed, and a solution is found when

the assumed frequency satisfies the constraints of the system. This generally requires sev-

eral trials. Depending on the trial frequency used, the fundamental as well as the higher

frequencies of the system can be determined. The method also gives the mode shapes.

7.4.1
Torsional
Systems

Consider the undamped torsional semidefinite system shown in Fig. 7.5. The equations of

motion of the discs can be derived as follows:

(7.29)

(7.30)

(7.31)

Since the motion is harmonic in a natural mode of vibration, we assume that 

in Eqs. (7.29) to (7.31) and obtain

(7.32)

(7.33)

(7.34)

Summing these equations gives

(7.35)

Equation (7.35) states that the sum of the inertia torques of the semidefinite system must

be zero. This equation can be treated as another form of the frequency equation, and the

trial frequency must satisfy this requirement.

a
3

i=1
 v2Ji®i = 0

 v2J3®3 = kt2(®3 - ®2)

 v2J2®2 = kt1(®2 - ®1) + kt2(®2 - ®3)

 v2J1®1 = kt1(®1 - ®2)

®i cos(vt + f)
ui =

 J3u
 $

3 + kt2(u3 - u2) = 0

 J2u
 $

2 + kt1(u2 - u1) + kt2(u2 - u3) = 0

 J1u
 $

1 + kt1(u1 - u2) = 0

kt1

J1

J2

J3

kt2

Shaft 1 Shaft 2

u1 u2

u3

FIGURE 7.5 Torsional semidefinite

system.
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In Holzer s method, a trial frequency is assumed, and is arbitrarily chosen as unity.

Next, is computed from Eq. (7.32), and then is found from Eq. (7.33). Thus we obtain

(7.36)

(7.37)

(7.38)

These values are substituted in Eq. (7.35) to verify whether the constraint is satisfied. If

Eq. (7.35) is not satisfied, a new trial value of is assumed and the process repeated.

Equations (7.35), (7.37), and (7.38) can be generalized for an n-disc system as follows:

(7.39)

(7.40)

Thus the method uses Eqs. (7.39) and (7.40) repeatedly for different trial frequencies. If the

assumed trial frequency is not a natural frequency of the system, Eq. (7.39) is not satisfied.

The resultant torque in Eq. (7.39) represents a torque applied at the last disc. This torque 

is then plotted for the chosen When the calculation is repeated with other values of the

resulting graph appears as shown in Fig. 7.6. From this graph, the natural frequencies of the

system can be identified as the values of at which The amplitudes 

corresponding to the natural frequencies are the mode shapes of the system.1, 2, Á , n)
®i  (i =Mt = 0.v

v,v.
Mt

 ®i = ®i-1 -
v

2

kti-1
+a

i-1

k=1
Jk®k* ,  i = 2, 3, Á , n

 a
n

i=1
 v2Ji®i = 0

v

 ®3 = ®2 -
v

2

kt2
 (J1®1 + J2®2)

 ®2 = ®1 -
v

2J1®1

kt1

 ®1 = 1

®3®2

®1v

Mt * Mt3

0.19 + 10
7

,0.63 + 10
7

0

w2 * 707.5

w3 * 1224.7w1 * 0

w

FIGURE 7.6 Resultant torque versus

frequency.



668 CHAPTER 7 DETERMINATION OF NATURAL FREQUENCIES AND MODE SHAPES

Holzer s method can also be applied to systems with fixed ends. At a fixed end, the

amplitude of vibration must be zero. In this case, the natural frequencies can be found by

plotting the resulting amplitude (instead of the resultant torque) against the assumed fre-

quencies. For a system with one end free and the other end fixed, Eq. (7.40) can be used for

checking the amplitude at the fixed end. An improvement of Holzer s method is presented

in references [7.13, 7.14].

E X A M P L E  7 . 4
Natural Frequencies of a Torsional System

The arrangement of the compressor, turbine, and generator in a thermal power plant is shown in

Fig. 7.7. Find the natural frequencies and mode shapes of the system.

Solution: This system represents an unrestrained or free-free torsional system. Table 7.1 shows its

parameters and the sequence of computations. The calculations for the trial frequencies 

and 710 are shown in this table. The quantity denotes the torque to the right of Station 3Mt320, 700,

v = 0, 10,

Stiffness,
kt1 * 4 MN-m/rad

Stiffness,
kt2 * 2 MN-m/rad

Turbine
(J2 * 6 kg-m2)

Compressor
(J1 * 8 kg-m2)

Generator
(J3 * 4 kg-m2)

FIGURE 7.7 Free-free torsional system.

TABLE 7.1

Parameters 

of the System Quantity

Trial

1 2 3 Á 71 72

0 10 20 700 710

v
2 0 100 400 490000 504100

Station 1:

J1 = 8 ®1 1.0 1.0 1.0 1.0 1.0

kt1 = 4 * 106 Mt1 = v
2J1®1 0 800 3200 0.392E7 0.403E7

Station 2:

J2 = 6 ®2 = 1 -
Mt1

kt1

1.0 0.9998 0.9992 0.0200 -0.0082

kt2 = 2 * 106 Mt2 = Mt1 + v
2J2®2 0 1400 5598 0.398E7 0.401E7

Station 3:

J3 = 4 ®3 = ®2 -
Mt2

kt2

1.0 0.9991 0.9964 -1.9690 -2.0120

Kt3 = 0 Mt3 = Mt2 + v
2J3®3 0 1800 7192 0.119E6 -0.494E5
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(generator), which must be zero at the natural frequencies. Figure 7.6 shows the graph of versus

Closely spaced trial values of are used in the vicinity of to obtain accurate values of the

first two flexible mode shapes, shown in Fig. 7.8. Note that the value corresponds to the rigid-

body rotation.

*

v = 0
Mt3 = 0vv.

Mt3

1.0 0.99

0

Compressor Turbine Generator

+1.0

+0.001

+2.0

+1.0

+2.0
w3 * 1224.7

w2 * 707.5

FIGURE 7.8 First two flexible modes.

7.4.2
Spring-Mass
Systems

Although Holzer s method has been extensively applied to torsional systems, the proce-

dure is equally applicable to the vibration analysis of spring-mass systems. The equations

of motion of a spring-mass system (see Fig. 7.9) can be expressed as

(7.41)

(7.42)

For harmonic motion, where is the amplitude of mass and

Eqs. (7.41) and (7.42) can be written as

(7.43)

(7.44)Á

 = -  v
2m1X1 + k2(X2 - X3)

 v2m2X2 = k1(X2 - X1) + k2(X2 - X3)

 v2m1X1 = k1(X1 - X2)

mi,Xixi(t) = Xi cos vt,

Á

 m2x 
$

2 + k1(x2 - x1) + k2(x2 - x3) = 0

 m1x 
$

1 + k1(x1 - x2) = 0

m1 m2

k1

X1 * 1

m3

k2

mn

kn+1

X2 X3 Xn

FIGURE 7.9 Free-free spring mass system.
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The procedure for Holzer s method starts with a trial frequency and the amplitude of

mass as Equations (7.43) and (7.44) can then be used to obtain the amplitudes

of the masses 

(7.45)

(7.46)

(7.47)

As in the case of torsional systems, the resultant force applied to the last (nth) mass can be

computed as follows:

(7.48)

The calculations are repeated with several other trial frequencies The natural frequen-

cies are identified as those values of that give for a free-free system. For this, it is

convenient to plot a graph between F and using the same procedure for spring-mass sys-

tems as for torsional systems.

7.5 Matrix Iteration Method

The matrix iteration method assumes that the natural frequencies are distinct and well sep-

arated such that The iteration is started by selecting a trial vector 

which is then premultiplied by the dynamical matrix [D]. The resulting column vector is

then normalized, usually by making one of its components equal to unity. The normalized

column vector is premultiplied by [D] to obtain a third column vector, which is normalized

in the same way as before and becomes still another trial column vector. The process is

repeated until the successive normalized column vectors converge to a common vector: the

fundamental eigenvector. The normalizing factor gives the largest value of 

that is, the smallest or the fundamental natural frequency [7.15]. The convergence of the

process can be explained as follows.

According to the expansion theorem, any arbitrary n-dimensional vector can

be expressed as a linear combination of the n orthogonal eigenvectors of the system

(7.49)

where are constants. In the iteration method, the trial vector is selected

arbitrarily and is therefore a known vector. The modal vectors although unknown, are

constant vectors because they depend upon the properties of the system. The constants ci

X
!
(i),

X
!

1c1, c2, Á , cn

X
!

1 = c1X
!
(1)

+ c2X
!
(2)

+ Á + cnX
!
(n)

X
!
(i), i = 1, 2, Á , n:

X
:

1

l = 1/v2

X
:

1,v1 6 v2 6
Á 6  vn.

v,
F = 0v

v.

F = a
n

i=1
 v2miXi

 Xi = Xi-1 -
v

2

ki-1
 +a

i-1

k=1
 mkXk* , i = 2, 3, Á , n

 X3 = X2 -
v

2

k2
 (m1X1 + m2X2)

 X2 = X1 -
v

2m1 X1

k1

m2, m3, Á , mi:
X1 = 1.m1

v
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are unknown numbers to be determined. According to the iteration method, we premulti-

ply by the matrix [D]. In view of Eq. (7.49), this gives

(7.50)

Now, according to Eq. (6.66), we have

(7.51)

Substitution of Eq. (7.51) into Eq. (7.50) yields

(7.52)

where is the second trial vector. We now repeat the process and premultiply by [D]

to obtain, by Eqs. (7.49) and (6.66),

(7.53)

By repeating the process we obtain, after the rth iteration,

(7.54)

Since the natural frequencies are assumed to be a sufficiently large

value of r yields

(7.55)

Thus the first term on the right-hand side of Eq. (7.54) becomes the only significant one.

Hence we have

(7.56)

which means that the trial vector becomes identical to the fundamental modal

vector to within a multiplicative constant. Since

(7.57)X
!

r =
c1

v1
2(r-1)

 X
!
(1)

(r + 1)th

X
!

r+1 =
c1

v1
2r

 X
!
(1)

1

v1
2r
W

1

v2
2r
W Á W

1

vn
2r

v1 6 v2 6
Á 6 vn,

 =
c1

v1
2r

 X
!
(1)

+
c2

v2
2r

 X
!
(2)

+ Á +
cn

vn
2r

 X
!
(n)

 [D]X
!

r = X
!

r+1

 =
c1

v1
4
 X
!
(1)

+
c2

v2
4
 X
!
(2)

+ Á +
cn

vn
4
 X
!
(n)

 [D]X
!

2 = X
!

3

X
!

2X
!

2

 =
c1

v1
2
 X
!
(1)

+
c2

v2
2
 X
!
(2)

+ Á +
cn

vn
2
 X
!
(n)

 [D]X
!

1 = X
!

2

[D]X
!
(i)
= li[I]X

!
(i)
=

1

vi
2

 X
!
(i); i = 1, 2, Á , n

[D]X
!

1 = c1[D]X
!
(1)

+ c2[D]X
!
(2)

+ Á + cn[D]X
!
(n)

X
!

1
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the fundamental natural frequency can be found by taking the ratio of any two corre-

sponding components in the vectors and 

(7.58)

where and are the ith elements of the vectors and respectively.X
!

r+1,X
!

rXi, r+1Xi, r

v1
2
M

Xi, r

Xi, r+1
,  for any i = 1, 2, Á , n

X
!

r+1:X
!

r

v1

Discussion

1. In the above proof, nothing has been said about the normalization of the successive trial

vectors Actually, it is not necessary to establish the proof of convergence of the

method. The normalization amounts to a readjustment of the constants in

each iteration.

2. Although it is theoretically necessary to have for the convergence of the

method, in practice only a finite number of iterations suffices to obtain a reasonably

good estimate of 

3. The actual number of iterations necessary to find the value of to within a desired

degree of accuracy depends on how closely the arbitrary trial vector resembles the

fundamental mode and on how well and are separated. The required number

of iterations is less if is very large compared to 

4. The method has a distinct advantage in that any computational errors made do not

yield incorrect results. Any error made in premultiplying by [D] results in a vector

other than the desired one, But this wrong vector can be considered as a new trial

vector. This may delay the convergence but does not produce wrong results.

5. One can take any set of n numbers for the first trial vector and still achieve conver-

gence to the fundamental modal vector. Only in the unusual case in which the trial

vector is exactly proportional to one of the modes does the method fail

to converge to the first mode. In such a case, the premultiplication of by [D]

results in a vector proportional to itself.X
!
(i)

X
!
(i)

X
!
(i) (i Z 1)X

!

1

X
!

1

X
!

i+1.

X
!

i

v1.v2

v2v1X
!
(1)

X
!

1

v1

v1.

r: q

c1, c2, Á , cn

X
!

i.

7.5.1
Convergence
to the Highest
Natural
Frequency

To obtain the highest natural frequency and the corresponding mode shape or eigenvec-

tor by the matrix iteration method, we first rewrite Eq. (6.66) as

(7.59)

where is the inverse of the dynamical matrix [D] given by

(7.60)

Now we select any arbitrary trial vector and premultiply it by to obtain an

improved trial vector The sequence of trial vectors obtained by pre-

multiplying by converges to the highest normal mode It can be seen that the

procedure is similar to the one already described. The constant of proportionality in this

case is instead of 1/v2.v
2

X
!
(n).[D] 

-
 
1

X
!

i+1 (i = 1, 2, Á )X
!

2.

[D] 
-

 
1X

!

1

[D] 

-1
= [m]-1[k]

[D] 
-

 
1

[D] 
-1 X

!
= v

2[I]X
!
= v

2X
!

X
!
(n)

vn
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7.5.2
Computation
of Intermediate
Natural
Frequencies

Once the first natural frequency (or the largest eigenvalue ) and the corre-

sponding eigenvector are determined, we can proceed to find the higher natural

frequencies and the corresponding mode shapes by the matrix iteration method. Before we

proceed, it should be remembered that any arbitrary trial vector premultiplied by [D]

would lead again to the largest eigenvalue. It is thus necessary to remove the largest eigen-

value from the matrix [D]. The succeeding eigenvalues and eigenvectors can be obtained

by eliminating the root from the characteristic or frequency equation

(7.61)

A procedure known as matrix deflation can be used for this purpose [7.16]. To find the

eigenvector by this procedure, the previous eigenvector is normalized with

respect to the mass matrix such that

(7.62)

The deflated matrix is then constructed as

(7.63)

where Once is constructed, the iterative scheme

(7.64)

is used, where is an arbitrary trial eigenvector.X
!

1

X
!

r+1 = [Di]X
!

r

[Di][D1] = [D].

[Di] = [Di-1] - li-1 X
!
(i-1)

 X
!
(i-1)T[m], i = 2, 3, Á , n

[Di]

X
!
(i-1)T[m]X

!
(i-1)

= 1

X
!
(i-1)X

!
(i)

[D] - l[I] = 0

l1

X
!
(1)

l1 = 1/v1
2

v1

E X A M P L E  7 . 5
Natural Frequencies of a Three-Degree-of-Freedom System

Find the natural frequencies and mode shapes of the system shown in Fig. 7.2 for 

and by the matrix iteration method.

Solution: The mass and stiffness matrices of the system are given in Example 7.2. The flexibility

matrix is

(E.1)

and so the dynamical matrix is

(E.2)[k] 
-

 
1[m] =

m

k
 C 1 1 1

1 2 2

1 2 3

S

[a] = [k] 
-

 
1
=

1

k
 C 1 1 1

1 2 2

1 2 3

S

m1 = m2 = m3 = m
k1 = k2 = k3 = k
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The eigenvalue problem can be stated as

(E.3)

where

(E.4)

and

(E.5)

First Natural Frequency: By assuming the first trial eigenvector or mode shape to be

(E.6)

the second trial eigenvector can be obtained:

(E.7)

By making the first element equal to unity, we obtain

(E.8)

and the corresponding eigenvalue is given by

(E.9)

The subsequent trial eigenvector can be obtained from the relation

(E.10)

and the corresponding eigenvalues are given by

(E.11)l1 M X1, i+1

X
!

i+1 = [D]X
!

i

l1 M 3.0 or v1 M 0.5773 A
k

m

X
!

2 = 3.0c 1.0000

1.6667

2.0000

s

X
!

2 = [D]X
!

1 = c 3

5

6

s

X
!

1 = c 1

1

1

s

l =
k

m
# 1

v
2

[D] = C 1 1 1

1 2 2

1 2 3

S

[D]X
!

= lX
!
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where is the first component of the vector before normalization. The various trial

eigenvectors and eigenvalues obtained by using Eqs. (E.10) and (E.11) are shown in the table

below.

X
!

i+1X1, i+1

i with X1, i = 1X
!

i X
!

i+1 = [D]X
!

i L1 M X1, i*1 V1

1 c 1

1

1

s c 3

5

6

s 3.0 0.5773  A
k

m

2 c 1.00000

1.66667

2.00000

s c 4.66667

8.33333

10.33333

s 4.66667 0.4629  A
k

m

3 c 1.0000

1.7857

2.2143

s c 5.00000

9.00000

11.2143

s 5.00000 0.4472  A
k

m

.

.

.

7 c 1.00000

1.80193

2.24697

s c 5.04891

9.09781

11.34478

s 5.04891 0.44504 A
k

m

8 c 1.00000

1.80194

2.24698

s c 5.04892

9.09783

11.34481

s 5.04892 0.44504 A
k

m

It can be seen that the mode shape and the natural frequency converged (to the fourth decimal place)

in eight iterations. Thus the first eigenvalue and the corresponding natural frequency and mode shape

are given by

(E.12)

Second Natural Frequency: To compute the second eigenvalue and the eigenvector, we must first

produce a deflated matrix:

(E.13)[D2] = [D1] - l1X
!
(1)X

!
(1)T[m]

 X
!
(1)

= c 1.00000

1.80194

2.24698

s
 l1 = 5.04892,  v1 = 0.44504 A

k

m
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This equation, however, calls for a normalized vector satisfying Let the nor-

malized vector be denoted as

where is a constant whose value must be such that

(E.14)

from which we obtain Hence the first normalized eigenvector is

(E.15)

Next we use Eq. (E.13) and form the first deflated matrix:

(E.16)

Since the trial vector can be chosen arbitrarily, we again take

(E.17)

By using the iterative scheme

(E.18)

we obtain 

(E.19)X
!

2 = c 0.25763

0.05847

-  0.16201

s = 0.25763 c 1.00000

0.22695

-  0.62885

s
X
!

2

X
!

i+1 = [D2]X
!

i

X
!

1 = c 1

1

1

s

 = C 0.45684 0.02127 -  0.22048

0.02127 0.23641 -  0.19921

-  0.22048 -  0.19921 0.25768

S

 [D2] = C 1 1 1

1 2 2

1 2 3

S - 5.04892c 0.32799

0.59102

0.73699

s c 0.32799

0.59102

0.73699

sTC 1 0 0

0 1 0

0 0 1

S

X
!
(1)

= m-1/2c 0.32799

0.59102

0.73699

s
a = 0.32799m-1/2.

 = a
2m(9.29591) = 1

 X
!
(1)T[m]X

!
(1)

= a
2m c 1.00000

1.80194

2.24698

sTC 1 0 0

0 1 0

0 0 1

S c 1.00000

1.80194

2.24698

s
a

X
!
(1)

= ac 1.00000

1.80194

2.24698

s

X
!
(1)T[m]X

!
(1)

= 1.X
!
(1)
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Hence can be found from the general relation

(E.20)

as 0.25763. Continuation of this procedure gives the results shown in the table below.

l2 M X1, i+1

l2

i X

!

i with X1, i + 1 X

!

i*1 + [D2]X
!

i L2 M X1, i*1 V2

1 c 1

1

1

s c 0.25763

0.05847

-  0.16201

s 0.25763 1.97016 A
k

m

2 c 1.00000

0.22695

-  0.62885

s c 0.60032

0.20020

-  0.42773

s 0.60032 1.29065 A
k

m

.

.

.

10 c 1.00000

0.44443

-  0.80149

s c 0.64300

0.28600

-  0.51554

s 0.64300 1.24708 A
k

m

11 c 1.00000

0.44479

-  0.80177

s c 0.64307

0.28614

-  0.51569

s 0.64307 1.24701 A
k

m

Thus the converged second eigenvalue and the eigenvector are

(E.21)

Third Natural Frequency: For the third eigenvalue and the eigenvector, we use a similar procedure.

The detailed calculations are left as an exercise to the reader. Note that before computing the deflated

matrix we need to normalize by using Eq. (7.62), which gives

(E.22)

*

X
!
(2)

= m-1/2c 0.73700

0.32794

-  0.59102

s
X
!
(2)[D3],

X
!
(2)

= c 1.00000

0.44496

-  0.80192

s
 l2 = 0.64307, v2 = 1.24701 A

k

m
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7.6 Jacobi s Method

The matrix iteration method described in the preceding section produces the eigenvalues

and eigenvectors of matrix [D] one at a time. Jacobi s method is also an iterative method

but produces all the eigenvalues and eigenvectors of [D] simultaneously, where

is a real symmetric matrix of order The method is based on a theorem

in linear algebra stating that a real symmetric matrix [D] has only real eigenvalues and that

there exists a real orthogonal matrix [R] such that is diagonal [7.17]. The

diagonal elements are the eigenvalues, and the columns of the matrix [R] are the eigenvec-

tors. According to Jacobi s method, the matrix [R] is generated as a product of several rota-

tion matrices [7.18] of the form

(7.65)

where all elements other than those appearing in columns and rows i and j are identical

with those of the identity matrix [I]. If the sine and cosine entries appear in positions (i, i),

(i, j), (j, i), and (j, j), then the corresponding elements of can be computed as

follows:

(7.66)

(7.67)

(7.68)

If is chosen to be

(7.69)

then it makes Thus each step of Jacobi s method reduces a pair of off-

diagonal elements to zero. Unfortunately, in the next step, while the method reduces a new

pair of zeros, it introduces nonzero contributions to formerly zero positions. However, suc-

cessive matrices of the form

[R2]T[R1]
T[D][R1][R2],  [R3]

T[R2]T[R1]
T[D][R1][R2][R3], Á

d ij = d ji = 0.

tan 2u = ¢ 2dij

dii - djj

u

 d jj = dii sin2 u -  2dij sin u cos u + djj cos2 u

 d ij = dji = (djj - dii) sin u cos u + dij( cos2 u -  sin2 u)

 d ii = dii cos2 u + 2dij sin u cos u + djj sin2 u

[R1]
T[D][R1]

[R1]
n *  n

= H 1 0

0 1

cos u -  sin u

sin u cos u

1

X  

ith row

jth row

jth columnith column

[R]T[D][R]

n * n.[D] = [dij]
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converge to the required diagonal form; the final matrix [R], whose columns give the

eigenvectors, then becomes

(7.70)[R] = [R1][R2][R3] Á

E X A M P L E  7 . 6
Eigenvalue Solution Using Jacobi Method

Find the eigenvalues and eigenvectors of the matrix

using Jacobi s method.

Solution: We start with the largest off-diagonal term, in the matrix [D] and try to reduce it

to zero. From Eq. (7.69),

Next we try to reduce the largest off-diagonal term of namely, to zero.

Equation (7.69) gives

 [D ] = [R2]T[D¿][R2] = C0.5133313 0.1632584 0.0

0.1632584 0.4384472 0.0566057

0.0 0.0566057 5.0482211

S

 [R2] = C  0.9448193 0.0 0.3275920

 0.0 1.0 0.0

-  0.3275920 0.0 0.9448193

S
 u2 =

1

2
 tan-1¢ 2d13

d11 - d33

=
1

2
 tan-1 ¢ 2.8072352

1.0 - 4.5615525
= -  19.122686°

d13 = 1.4036176[D ]

 [D¿] = [R1]
T[D][R1] = C 1.0 0.1727932 1.4036176

0.1727932 0.4384472 0.0

1.4036176 0.0 4.5615525

S

 [R1] = C 1.0 0.0 0.0

0.0 0.7882054 0.6154122

0.0 -  0.6154122 0.7882054

S
 u1 =

1

2
 tan-1 ¢ 2d23

d22 - d33
=

1

2
 tan-1 ¢ 4

2 - 3
= -  37.981878°

d23 = 2,

[D] = C 1 1 1

1 2 2

1 2 3

S
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The largest off-diagonal element in is can be obtained from Eq. (7.69) as

Assuming that all the off-diagonal terms in are close to zero, we can stop the process here. The

diagonal elements of give the eigenvalues (values of ) as 0.6433861, 0.3083924, and

5.0482211. The corresponding eigenvectors are given by the columns of the matrix [R], where

The iterative process can be continued for obtaining a more accurate solution. The present eigenval-

ues can be compared with the exact values: 0.6431041, 0.3079786, and 5.0489173.

*

7.7 Standard Eigenvalue Problem
In the preceding chapter, the eigenvalue problem was stated as

(7.71)

which can be rewritten in the form of a standard eigenvalue problem [7.19] as

(7.72)

where

(7.73)

and

(7.74)l =

1

v
2

[D] = [k] 
-

 
1[m]

[D] X
!

= lX
!

[k]X
!

= v
2[m]X

!

[R] = [R1][R2][R3] = C 0.7389969 -  0.5886994 0.3275920

0.3334301 0.7421160 0.5814533

-  0.5854125 -  0.3204631 0.7447116

S

1/v2[D ]

[D ]

 [D ] = [R3]
T[D ][R3] = C0.6433861 0.0 0.0352699

0.0 0.3083924 0.0442745

0.0352699 0.0442745 5.0482211

S

 [R3] = C0.7821569 -  0.6230815 0.0

0.6230815  0.7821569 0.0

0.0  0.0 1.0

S
 u3 =

1

2
 tan-1 ¢ 2d12

d11 - d22

=
1

2
 tan-1 ¢ 0.3265167

0.5133313 - 0.4384472
= 38.541515°

u3d12 = 0.1632584.[D ]



Stephen Prokf yevich Timoshenko (1878 1972), a Russian-born engineer who
emigrated to the United States, was one of the most widely known authors of
books in the field of elasticity, strength of materials, and vibrations. He held the
chair of mechanics at the university of Michigan and later at Stanford University,

and he is regarded as the father of engineering mechanics in the United States.
The improved theory he presented in 1921 for the vibration of beams has become
known as the Timoshenko beam theory. (Courtesy of Applied Mechanics

Reviews.)
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Chapter Outline

The vibration analysis of continuous systems, which are also known as distributed systems,

is considered in this chapter. The equations of motion of continuous systems will be partial

differential equations. The equations of motion of several continuous systems, including the

transverse vibration of a tightly stretched string or cable, longitudinal vibration of a bar, tor-

sional vibration of a shaft or rod, the lateral vibration of beams, and transverse vibration of

a membrane are derived by considering the free-body diagram of an infinitesimally small
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element of the particular system and applying the Newton s second law of motion. The free-

vibration solution of the system is found by assuming harmonic motion and applying the

relevant boundary conditions. The solution gives infinite number of natural frequencies and

the corresponding mode shapes. The free-vibration displacement of the system is found as a

linear superposition of the mode shapes, the constants involved being determined from the

known initial conditions of the system. In the case of transverse vibration of a string of infi-

nite length, the traveling-wave solution is presented. In the case of the longitudinal vibration

of a bar, the vibration response under an initial force is also found. In the case of the trans-

verse vibration of beams, all the common boundary conditions are summarized and the

orthogonality of normal modes is proved. The forced vibration of beams is presented using

the mode superposition method. The effect of axial force on the natural frequencies and

mode shapes of beams is considered. The thick beam theory, also called the Timoshenko

beam theory, is presented by considering the effects of rotary inertia and shear deformation.

The free vibration of rectangular membranes is presented. Rayleigh s method, based on

Rayleigh s quotient, for finding the approximate fundamental frequencies of continuous

systems is outlined. The extension of the method, known as the Rayleigh-Ritz method, is

outlined for determining approximate values of several frequencies. Finally, MATLAB

solutions are presented for the free and forced vibration of typical continuous systems.

Learning Objectives

After you have finished studying this chapter, you should be able to do the following:

* Derive the equation of motion of a continuous system from the free-body diagram of

an infinitesimally small element of the system and Newton s second law.

* Find the natural frequencies and mode shapes of the system using harmonic solution.

* Determine the free-vibration solution using a linear superposition of the mode shapes

and the initial conditions.

* Find the free-vibration solutions of string, bar, shaft, beam, and membrane problems.

* Express the vibration of an infinite string in the form of traveling waves.

* Determine the forced-vibration solution of continuous systems using mode 

superposition method.

* Find the effects of axial force, rotary inertia, and shear deformation on the vibration

of beams.

* Apply the Rayleigh and Rayleigh-Ritz methods to find the approximate natural 

frequencies of continuous systems.

* Use MATLAB to find the natural frequencies, mode shapes, and forced response of

continuous systems.

8.1 Introduction

We have so far dealt with discrete systems where mass, damping, and elasticity were

assumed to be present only at certain discrete points in the system. In many cases, known

as distributed or continuous systems, it is not possible to identify discrete masses, dampers,
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or springs. We must then consider the continuous distribution of the mass, damping, and

elasticity and assume that each of the infinite number of points of the system can vibrate.

This is why a continuous system is also called a system of infinite degrees of freedom.

If a system is modeled as a discrete one, the governing equations are ordinary differen-

tial equations, which are relatively easy to solve. On the other hand, if the system is modeled

as a continuous one, the governing equations are partial differential equations, which are

more difficult. However, the information obtained from a discrete model of a system may not

be as accurate as that obtained from a continuous model. The choice between the two models

must be made carefully, with due consideration of factors such as the purpose of the analysis,

the influence of the analysis on design, and the computational time available.

In this chapter, we shall consider the vibration of simple continuous systems

strings, bars, shafts, beams, and membranes. A more specialized treatment of the vibra-

tion of continuous structural elements is given in references [8.1 8.3]. In general, the

frequency equation of a continuous system is a transcendental equation that yields an infi-

nite number of natural frequencies and normal modes. This is in contrast to the behavior

of discrete systems, which yield a finite number of such frequencies and modes. We need

to apply boundary conditions to find the natural frequencies of a continuous system. The

question of boundary conditions does not arise in the case of discrete systems except in an

indirect way, because the influence coefficients depend on the manner in which the sys-

tem is supported.

8.2 Transverse Vibration of a String or Cable

8.2.1
Equation of
Motion

Consider a tightly stretched elastic string or cable of length l subjected to a transverse

force f(x, t) per unit length, as shown in Fig. 8.1(a). The transverse displacement of the

string, w(x, t), is assumed to be small. Equilibrium of the forces in the z direction gives

(see Fig. 8.1(b)):

The net force acting on an element is equal to the inertia force acting on the element, or

(8.1)

where P is the tension, is the mass per unit length, and is the angle the deflected string

makes with the x-axis. For an elemental length dx,

(8.2)

(8.3)

and

(8.4)sin (u + du) M tan (u + du) =
0w

0x
+
0

2w

0x2
 dx

 sin u M  tan u =
0w

0x

dP =
0P

0x
 dx

ur

(P + dP) sin(u + du) + f dx - P sin u = r dx 

0
2w

0t2
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z, w (x, t)

z, w(x, t)

f(x, t)

f(x, t)

O

x

dx

l

x

O
x

dx

A

A
P

P  dP

x

B

B

w w  dw

x  dx

ds

u  du

(a)

(b)

u

FIGURE 8.1 A vibrating string.

Hence the forced-vibration equation of the nonuniform string, Eq. (8.1), can be simplified to

(8.5)

If the string is uniform and the tension is constant, Eq. (8.5) reduces to

(8.6)

If we obtain the free-vibration equation

(8.7)

or

(8.8)c2
 

0
2
w

0x2
=

0
2
w

0t2

P 

0
2
w(x, t)

0x2
= r 

0
2
w(x, t)

0t2

f(x,t) = 0,

P 

0
2
w(x, t)

0x2
+ f(x, t) = r 

0
2
w(x, t)

0t2

0

0x
 BP 

0w(x, t)

0x
R + f(x, t) = r(x) 

0
2
w(x, t)

0t2
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where

(8.9)

Equation (8.8) is also known as the wave equation.

c = +P

r
*1/2

8.2.2
Initial and
Boundary
Conditions

The equation of motion, Eq. (8.5) or its special forms (8.6) and (8.7), is a partial differen-

tial equation of the second order. Since the order of the highest derivative of w with respect

to x and t in this equation is two, we need to specify two boundary and two initial condi-

tions in finding the solution w(x, t). If the string has a known deflection and veloc-

ity at time the initial conditions are specified as

(8.10)

If the string is fixed at an end, say the displacement w must always be zero, and so

the boundary condition is

(8.11)

If the string or cable is connected to a pin that can move in a perpendicular direction as

shown in Fig. 8.2, the end cannot support a transverse force. Hence the boundary condition

becomes

(8.12)P(x) 

0w(x, t)

0x
= 0

w(x = 0, t) = 0,  t Ú 0

x = 0,

 
0w

0t
 (x, t = 0) = w 

#
w
#

0(x)

 w(x, t = 0) = w0(x)

t = 0,w
#

0(x)
w0(x)

P

P

z, w

Slot

Slot

x

*w

*x *w

*x

FIGURE 8.2 String connected to pins at

the ends.



704 CHAPTER 8 CONTINUOUS SYSTEMS

If the end is free and P is a constant, then Eq. (8.12) becomes

(8.13)

If the end is constrained elastically as shown in Fig. 8.3, the boundary condition

becomes

(8.14)

where is the spring constant.k
'

P(x) 

0w(x, t)

0x
`
x= l

= - k
'
w(x, t) x= l,  t Ú 0

x = l

0w(0, t)

0x
= 0,  t Ú 0

x = 0

z, w

x

l

k

FIGURE 8.3 String with elastic constraint.

8.2.3
Free Vibration 
of a Uniform
String

The free-vibration equation, Eq. (8.8), can be solved by the method of separation of vari-

ables. In this method, the solution is written as the product of a function W(x) (which

depends only on x) and a function T(t) (which depends only on t) [8.4]:

(8.15)

Substitution of Eq. (8.15) into Eq. (8.8) leads to

(8.16)

Since the left-hand side of this equation depends only on x and the right-hand side depends

only on t, their common value must be a constant say, a so that

(8.17)

The equations implied in Eq. (8.17) can be written as

(8.18)
d2W

dx2
-

a

c2
 W = 0

c2

W
  

d2W

dx2
=

1

T
 

d2T

dt2
= a

c2

W
  

d2W

dx2
=

1

T
 

d2T

dt2

w(x, t) = W(x)T(t)
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(8.19)

Since the constant a is generally negative (see Problem 8.9), we can set and

write Eqs. (8.18) and (8.19) as

(8.20)

(8.21)

The solutions of these equations are given by

(8.22)

(8.23)

where is the frequency of vibration and the constants A, B, C, and D can be evaluated

from the boundary and initial conditions.

v

T(t)  = C cos vt + D sin vt

W(x) = A cos 
vx

c
+ B sin 

vx

c

d2T

dt2
+ v

2T  = 0

d2W

dx2
+
v

2

c2
 W = 0

a = -v
2

d2T

dt2
- aT  = 0

8.2.4
Free Vibration 
of a String with
Both Ends Fixed

If the string is fixed at both ends, the boundary conditions are for

all time Hence, from Eq. (8.15), we obtain

(8.24)

(8.25)

In order to satisfy Eq. (8.24), A must be zero in Eq. (8.22). Equation (8.25) requires that

(8.26)

Since B cannot be zero for a nontrivial solution, we have

(8.27)

Equation (8.27) is called the frequency or characteristic equation and is satisfied by sev-

eral values of The values of are called the eigenvalues (or natural frequencies or

characteristic values) of the problem. The nth natural frequency is given by

or

(8.28)vn =
ncp

l
,  n = 1, 2, Á

vnl

c
= np,  n = 1, 2, Á

vv.

sin 

vl

c
= 0

B sin 
vl

c
= 0

W(l) = 0

W(0) = 0

t Ú 0.
w(0, t) = w(l, t) = 0
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wn

x

l

O

wn

x

wn

x

l

l

O

O

l

2

l

3 3

n * 1

n * 2

n * 3

l2

FIGURE 8.4 Mode shapes of a string.

The solution corresponding to can be expressed as

(8.29)

where and are arbitrary constants. The solution is called the nth mode of

vibration or nth harmonic or nth normal mode of the string. In this mode, each point of the

string vibrates with an amplitude proportional to the value of at that point, with the cir-

cular frequency The function is called the nth normal mode, or

characteristic function. The first three modes of vibration are shown in Fig. 8.4. The mode

corresponding to is called the fundamental mode, and is called the fundamental

frequency. The fundamental period is

The points at which for all times are called nodes. Thus the fundamental mode has

two nodes, at and the second mode has three nodes, at and

etc.

The general solution of Eq. (8.8), which satisfies the boundary conditions of Eqs. (8.24)

and (8.25), is given by the superposition of all wn(x, t):

x = l;
x = 0, x = l/2,x = l;x = 0

wn = 0

t1 =
2p

v1
=

2l

c

v1n = 1

Wn(x)vn = (ncp)/l.
Wn

wn(x, t)DnCn

wn(x, t) = Wn(x)Tn(t) = sin 

npx

l
 BCn cos 

ncpt

l
+ Dn sin 

ncpt

l
R

vnwn(x, t)
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(8.30)

This equation gives all possible vibrations of the string; the particular vibration that occurs

is uniquely determined by the specified initial conditions. The initial conditions give

unique values of the constants and If the initial conditions are specified as in Eq. (8.10),

we obtain

(8.31)

(8.32)

which can be seen to be Fourier sine series expansions of and in the interval

The values of and can be determined by multiplying Eqs. (8.31) and

(8.32) by and integrating with respect to x from 0 to l:

(8.33)

(8.34)

Note: The solution given by Eq. (8.30) can be identified as the mode superposition method

since the response is expressed as a superposition of the normal modes. The procedure is

applicable in finding not only the free-vibration solution but also the forced-vibration solu-

tion of continuous systems.

Dn =
2

ncpL
 l

0
w 
#

0(x) sin 
npx

l
 dx

Cn =
2

l L
 l

0
w0(x) sin 

npx

l
 dx

sin(npx/l)
DnCn0 x l.

w 
#

0(x)w0(x)

 a
q

n=1
 

ncp

l
Dn sin 

npx

l
= w 

#
w
#

0(x)

 a
q

n=1
 Cn sin 

npx

l
= w0(x)

Dn.Cn

 = a
q

n=1
 sin 

npx

l
 BCn cos 

ncpt

l
+ Dn sin 

ncpt

l
R

 w(x, t) = a
q

n=1
 wn(x, t)

E X A M P L E  8 . 1
Dynamic Response of a Plucked String

If a string of length l, fixed at both ends, is plucked at its midpoint as shown in Fig. 8.5 and then

released, determine its subsequent motion.

Solution: The solution is given by Eq. (8.30) with and given by Eqs. (8.33) and (8.34),

respectively. Since there is no initial velocity, and so Thus the solution of Eq.

(8.30) reduces to

(E.1)w(x, t) = a
q

n=1
  Cn sin 

npx

l
 cos 

ncpt

l

Dn = 0.w 
#

0(x) = 0,
DnCn
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where

(E.2)

The initial deflection is given by

(E.3)

By substituting Eq. (E.3) into Eq. (E.2), can be evaluated:

(E.4)

By using the relation

(E.5)

the desired solution can be expressed as

(E.6)

In this case, no even harmonics are excited.

*

w(x, t) =
8h

p
2
b sin 

px

l
 cos 

pct

l
-

1

9
 sin 

3px

l
 cos 

3pct

l
+ Ár

sin 
np

2
= (-1)(n-1)/2,  n = 1, 3, 5, Á

 =
c 8h

p
2n2

 sin 
np

2
 for n = 1, 3, 5, Á

0 for n = 2, 4, 6, Á

 Cn =
2

l
 b L  l/2

0
 
2hx

l
 sin 

npx

l
  dx + L

 l

l/2
 
2h

l
  (l - x) sin 

npx

l
  dx r

Cn

w0(x) = d 2hx

l
  for 0 x

l

2
2h(l - x)

l
 for 

l

2
x l

w0(x)

Cn =
2

l L
 l

0
 w0(x) sin 

npx

l
 dx

l

2
l

2
l

h

x
O

w0(x, 0)

FIGURE 8.5 Initial deflection of the string.
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8.2.5
Traveling-Wave
Solution

The solution of the wave equation, Eq. (8.8), for a string of infinite length can be

expressed as [8.5]

(8.35)

where and are arbitrary functions of and respectively. To show

that Eq. (8.35) is the correct solution of Eq. (8.8), we first differentiate Eq. (8.35):

(8.36)

(8.37)

Substitution of these equations into Eq. (8.8) reveals that the wave equation is satisfied. In

Eq. (8.35), and represent waves that propagate in the positive and

negative directions of the x-axis, respectively, with a velocity c.

For a given problem, the arbitrary functions and are determined from the initial

conditions, Eq. (8.10). Substitution of Eq. (8.35) into Eq. (8.10) gives, at 

(8.38)

(8.39)

where the prime indicates differentiation with respect to the respective argument at 

(that is, with respect to x). Integration of Eq. (8.39) yields

(8.40)

where is a constant. Solution of Eqs. (8.38) and (8.40) gives and 

(8.41)

(8.42)

By replacing x by and respectively, in Eqs. (8.41) and (8.42), we

obtain the total solution:

(8.43) =
1

2
 [w0(x - ct) + w0(x + ct)] +

1

2cL
x+ct

x-ct
w
 #
w

#
0(x¿) dx¿

 w(x, t) = w1(x - ct) + w2(x + ct)

(x + ct),(x - ct)

 w2(x) =
1

2
 Bw0(x) +

1

cL
x

x0

ww
#
 

 #  
0(x¿) dx¿ R

 w1(x) =
1

2
 Bw0(x) -

1

cL
x

x0

w
 #
w

#
 0(x¿) dx¿R

w2:w1x0

-w1(x) + w2(x) =
1

cL
x

x0

w
 #

0(x¿) dx¿

t = 0

-cw1(x) + cw2(x) = w
 #

0(x)

w1(x) + w2(x)  = w0(x)

t = 0,
w2w1

w2(x + ct)w1(x - ct)

0
2
w(x, t)

0t2
= c2

w1(x - ct) + c2
w2(x + ct)

0
2
w(x, t)

0x2
= w1(x - ct) + w2(x + ct)

(x + ct),(x - ct)w2w1

w(x, t) = w1(x - ct) + w2(x + ct)
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The following points should be noted:

1. As can be seen from Eq. (8.43), there is no need to apply boundary conditions to the

problem.

2. The solution given by Eq. (8.43) can be expressed as

(8.44)

where denotes the waves propagating due to the known initial displacement

with zero initial velocity, and represents waves traveling due only to

the known initial velocity with zero initial displacement.

The transverse vibration of a string fixed at both ends excited by the transverse impact

of an elastic load at an intermediate point was considered in [8.6]. A review of the literature

on the dynamics of cables and chains was given by Triantafyllou [8.7].

8.3 Longitudinal Vibration of a Bar or Rod

w 
#

0(x)
wV(x, t)w0(x)

wD(x, t)

w(x, t) = wD(x, t) + wV(x, t)

8.3.1
Equation of
Motion and
Solution

Consider an elastic bar of length l with varying cross-sectional area A(x), as shown in

Fig. 8.6. The forces acting on the cross sections of a small element of the bar are given by

P and with

(8.45)

where is the axial stress, E is Young s modulus, u is the axial displacement, and is

the axial strain. If f(x, t) denotes the external force per unit length, the summation of the

forces in the x direction gives the equation of motion

(8.46)(P + dP) + f dx - P = rA dx 
0

2u

0t2

0u/0xs

P = sA = EA 

0u

0x

P + dP

O

z

x

a c

b d
x

l

dx

(a) (b)

a*

c*c

a

b*

d*d

dx

u

b

P P + dP

u + du

Equilibrium
position

Displaced
position

FIGURE 8.6 Longitudinal vibration of a bar.
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where is the mass density of the bar. By using the relation and Eq.

(8.45), the equation of motion for the forced longitudinal vibration of a nonuniform bar,

Eq. (8.46), can be expressed as

(8.47)

For a uniform bar, Eq. (8.47) reduces to

(8.48)

The free-vibration equation can be obtained from Eq. (8.48), by setting as

(8.49)

where

(8.50)

Note that Eqs. (8.47) to (8.50) can be seen to be similar to Eqs. (8.5), (8.6), (8.8), and (8.9),

respectively. The solution of Eq. (8.49), which can be obtained as in the case of Eq. (8.8),

can thus be written as

(8.51)u(x, t) = U(x)T(t) K ¢A
'

 cos 

vx

c
+ B

'
 sin 

vx

c
 (C cos vt + D sin vt)

1

c = A
E

r

c2
 

0
2u

0x2
 (x, t) =

0
2u

0t2
 (x, t)

f = 0,

EA 

0
2u

0x2
 (x, t) + f(x, t) = rA 

0
2u

0t2
 (x, t)

0

0x
 BEA(x) 

0u(x, t)

0x
R + f(x, t) = r(x)A(x) 

0
2u

0t2
 (x, t)

dP = (0P/0x) dxr

End Conditions
of Bar

Boundary
Conditions

Frequency
Equation

Mode Shape
(Normal Function)

Natural
Frequencies

u(0, t) , 0

u(0, t) , 0

u(l, t) , 0

(l, t) , 0
+u

+x

(l, t) , 0
+u

+x

(0, t) , 0
+u

+x

cos     , 0
vl

c

sin     , 0
vl

c

sin     , 0
vl

c

Un (x) , Cn sin (2n * 1) px
2l

Un (x) , Cn cos npx
l

Un (x) , Cn cos npx
l

(2n * 1) pc
2l

vn , ;

npc

l
vn , ;

npc

l
vn , ;

n , 0, 1, 2, . . .

n , 0, 1, 2, . . .

n , 1, 2, 3, . . .

Fixed-free

Free-free

Fixed-fixed

FIGURE 8.7 Common boundary conditions for a bar in longitudinal vibration.

1We use and in this section; A is used to denote the cross-sectional area of the bar.B
'

A
'
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where the function U(x) represents the normal mode and depends only on x and the func-

tion T(t) depends only on t. If the bar has known initial axial displacement and ini-

tial velocity the initial conditions can be stated as

(8.52)

The common boundary conditions and the corresponding frequency equations for the lon-

gitudinal vibration of uniform bars are shown in Fig. 8.7.

 
0u

0t
 (x, t = 0) = u

#

0(x)

 u(x, t = 0) = u0(x)

u
#

0(x),
u0(x)

E X A M P L E  8 . 2
Boundary Conditions for a Bar

A uniform bar of cross-sectional area A, length l, and Young s modulus E is connected at both ends

by springs, dampers, and masses, as shown in Fig. 8.8(a). State the boundary conditions.

Solution: The free-body diagrams of the masses and are shown in Fig. 8.8(b). From this, we

find that at the left end the force developed in the bar due to positive u and must be

equal to the sum of spring, damper, and inertia forces:

(E.1)

Similarly at the right end the force developed in the bar due to positive u and must be

equal to the negative sum of spring, damper, and inertia forces:

(E.2)AE 

0u

0x
  (l, t) = -k2u(l, t) - c2 

0u

0t
 (l, t) - m2 

0
2u

0t2
 (l, t)

0u/0x(x = l),

AE 

0u

0x
  (0, t) = k1u(0, t) + c1 

0u

0t
  (0, t) + m1 

0
2u

0t2
  (0, t)

0u/0x(x = 0),
m2m1

k1 k2

c1 c2m1 m2

x , 0 x , l

(a)

(b)

+u

+x
AE

+u

+x
AE

k1u k2u

m1 m2

+u

+x
*x, *u, *

Free-body diagram of mass m1 Free-body diagram of mass m2

m1u m2u

c2uc1u

FIGURE 8.8 Bar connected to springs-masses-dampers at ends.

*
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8.3.2
Orthogonality 
of Normal
Functions

The normal functions for the longitudinal vibration of bars satisfy the orthogonality relation

(8.53)

where and denote the normal functions corresponding to the ith and jth natural

frequencies and respectively. When and 

are assumed as solutions, Eq. (8.49) gives

(8.54)

and

(8.55)

where and Multiplication of Eq. (8.54) by and Eq. (8.55) by 

gives

(8.56)

(8.57)

Subtraction of Eq. (8.57) from Eq. (8.56) and integration from 0 to l results in

(8.58)

The right-hand side of Eq. (8.58) can be proved to be zero for any combination of bound-

ary conditions. For example, if the bar is fixed at and free at 

(8.59)

(8.60)

Thus due to being zero (Eq. (8.60)) and 

due to U being zero (Eq. (8.59)). Equation (8.58) thus reduces to Eq. (8.53), which is also

known as the orthogonality principle for the normal functions.

(Ui Uj - Uj Ui) x=0 = 0U(UiUj - UjUi) x= l = 0

0u

0x
 (l, t) = 0,  t Ú 0 or U¿(l) = 0

u(0, t)  = 0,  t Ú 0 or U(0) = 0

x = l,x = 0

 = -  

c2

vi
2
- vj

2
  [UiUj - UjUi] `

0

l

 L
l

0
 Ui Uj dx = -  

c2

vi
2
- vj

2L
l

0
(Ui Uj - Uj Ui) dx

 c2Uj Ui + vj
2UjUi = 0

 c2Ui Uj + vi
2UiUj = 0

Ui

UjUj =

d2Uj

dx2
.Ui =

d2Ui

dx2

c2 
d2Uj(x)

dx2
+ vj

2
 Uj(x) = 0 or c2 Uj (x) + vj

2
 Uj (x) = 0

c2 
d2Ui(x)

dx2
+ vi

2 Ui(x) = 0 or c2
 Ui (x) + vi

2
 Ui(x) = 0

u(x, t) = Uj(x)T(t)u(x, t) = Ui(x)T(t)vj,vi

Uj 
(x)Ui(x)

L
l

0
  Ui(x)Uj 

(x) dx = 0
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E X A M P L E  8 . 3

Free Vibrations of a Fixed-Free Bar

Find the natural frequencies and the free-vibration solution of a bar fixed at one end and free at the

other.

Solution: Let the bar be fixed at and free at so that the boundary conditions can be

expressed as

(E.1)

(E.2)

The use of Eq. (E.1) in Eq. (8.51) gives while the use of Eq. (E.2) gives the frequency equation

(E.3)

The eigenvalues or natural frequencies are given by

or

(E.4)

Thus the total (free-vibration) solution of Eq. (8.49) can be written, using the mode superposition

method, as

(E.5)

where the values of the constants and can be determined from the initial conditions, as in Eqs.

(8.33) and (8.34):

(E.6)

(E.7)

*

 Dn =
4

(2n + 1)pcL
l

0
u
#

0(x) sin  
(2n + 1)px

2l
 dx

 Cn =
2

l L
l

0
u0(x) sin  

(2n + 1)px

2l
 dx

DnCn

 = a
q

n=0
 sin 

(2n + 1)px

2l
 BCn cos 

(2n + 1)pct

2l
+ Dn sin 

(2n + 1)pct

2l
R

 u(x, t) = a
q

n=0
 un(x, t)

vn =

(2n + 1)pc

2l
,  n = 0, 1, 2, Á

vnl

c
= (2n + 1) 

p

2
,  n = 0, 1, 2, Á

B
'

 

v

c
 cos 

vl

c
= 0 or  cos 

vl

c
= 0

A
'
= 0,

0u

0x
 (l, t) = 0,  t Ú 0

u(0, t) = 0,  t Ú 0

x = l,x = 0
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E X A M P L E  8 . 4
Natural Frequencies of a Bar Carrying a Mass

Find the natural frequencies of a bar with one end fixed and a mass attached at the other end, as in

Fig. 8.9.

Solution: The equation governing the axial vibration of the bar is given by Eq. (8.49) and the

solution by Eq. (8.51). The boundary condition at the fixed end 

(E.1)

leads to in Eq. (8.51). At the end the tensile force in the bar must be equal to the iner-

tia force of the vibrating mass M, and so

(E.2)

With the help of Eq. (8.51), this equation can be expressed as

That is,

or

(E.3)

where

(E.4)

and

(E.5)b =
AEl

c2M
=

Arl

M
=

m

M

a =
vl

c

a tan a = b

AEv

c
 cos 

vl

c
= Mv2 sin 

vl

c

AE 

v

c
 cos 

vl

c
 (C cos vt + D sin vt) = Mv2 sin 

vl

c
 (C cos vt + D sin vt)

AE 

0u

0x
 (l, t) = -M 

0
2u

0t2
 (l, t)

x = l,A
'
= 0

u(0, t) = 0

(x = 0)

O x

l

M

r, A, E

FIGURE 8.9 Bar carrying an end mass.
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where m is the mass of the bar. Equation (E.3) is the frequency equation (in the form of a transcen-

dental equation) whose solution gives the natural frequencies of the system. The first two natural fre-

quencies are given in Table 8.1 for different values of the parameter 

Note: If the mass of the bar is negligible compared to the mass attached, 

In this case

and the frequency equation (E.3) can be taken as

This gives the approximate value of the fundamental frequency

where

represents the static elongation of the bar under the action of the load Mg.

*

ds =
Mgl

EA

v1 =
c

l
 b1/2

=

c

l
 arAl

M
b1/2

= aEA

lM
b1/2

= a g

ds
b1/2

av l

c
b2

= b

tan 

vl

c
M

vl

c

c = aE

r
b1/2

= aEAl

m
b 1/2

: q and a =

vl

c
: 0

m M 0,

b.

TABLE 8.1

Values of the Mass Ratio B

0.01 0.1 1.0 10.0 100.0

Value of a1 +v1 =
a1c

l
* 0.1000 0.3113 0.8602 1.4291 1.5549

Value of a2 +v2 =
a2c

l
* 3.1448 3.1736 3.4267 4.3063 4.6658

E X A M P L E  8 . 5
Vibrations of a Bar Subjected to Initial Force

A bar of uniform cross-sectional area A, density modulus of elasticity E, and length l is fixed at

one end and free at the other end. It is subjected to an axial force at its free end, as shown in

Fig. 8.10(a). Study the resulting vibrations if the force is suddenly removed.F0

F0

r,
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Solution: The tensile strain induced in the bar due to is

Thus the displacement of the bar just before the force is removed (initial displacement) is given by

(see Fig. (8.10b))

(E.1)

Since the initial velocity is zero, we have

(E.2)

The general solution of a bar fixed at one end and free at the other end is given by Eq. (E.5) of

Example 8.3:

(E.3)

where and are given by Eqs. (E.6) and (E.7) of Example 8.3. Since we obtain 

By using the initial displacement of Eq. (E.1) in Eq. (E.6) of Example 8.3, we obtain

Dn = 0.u
#

0 = 0,DnCn

 = a

q

n=0
 sin 

(2n + 1)px

2l
 BCn cos 

(2n + 1)pct

2l
+ Dn sin 

(2n + 1)pct

2l
R

 u(x, t) = a

q

n=0
 un(x, t)

u
#

0 =
0u

0t
 (x, 0) = 0,  0 x l

u0 = u(x, 0) = ex =
F0x

EA
,  0 x l

F0

e =
F0

EA

F0

O x

l

d0

F0

(a)

(b)

x * 0 x * lx

u0(x)
d0 *

F0l

EA

FIGURE 8.10 Bar subjected to an axial

force at end.
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(E.4)

Thus the solution becomes

(E.5)

Equations (E.3) and (E.5) indicate that the motion of a typical point at on the bar is com-

posed of the amplitudes

corresponding to the circular frequencies

*

8.4 Torsional Vibration of a Shaft or Rod

Figure 8.11 represents a nonuniform shaft subjected to an external torque f(x, t) per unit

length. If denotes the angle of twist of the cross section, the relation between the

torsional deflection and the twisting moment is given by [8.8]

(8.61)

where G is the shear modulus and GJ(x) is the torsional stiffness, with J(x) denoting the

polar moment of inertia of the cross section in the case of a circular section. If the mass

polar moment of inertia of the shaft per unit length is the inertia torque acting on an ele-

ment of length dx becomes

If an external torque f (x, t) acts on the shaft per unit length, the application of Newton s

second law yields the equation of motion:

(8.62)

By expressing as

0Mt

0x
 dx

dMt

(Mt + dMt) + f dx - Mt = I0 dx 
0

2
u

0t2

I0 dx 

0
2
u

0t2

I0,

Mt(x, t) = GJ(x) 
0u

0x
 (x, t)

Mt(x, t)
u(x, t)
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2l

Cn sin 

(2n + 1)px0

2l

x = x0

u(x, t) =
8F0 

l

EAp2a
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 sin 

(2n + 1) px

2l
 cos 

(2n + 1) pct

2l
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2

l L
l

0

F0x

EA
 #  sin 

(2n + 1) px

2l
 dx =

8F0 
l

EAp2
  

(-1)n

(2n + 1)2
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and using Eq. (8.61), the forced torsional vibration equation for a nonuniform shaft can be

obtained:

(8.63)

For a uniform shaft, Eq. (8.63) takes the form

(8.64)

which, in the case of free vibration, reduces to

(8.65)

where

(8.66)

Notice that Eqs. (8.63) to (8.66) are similar to the equations derived in the cases of trans-

verse vibration of a string and longitudinal vibration of a bar. If the shaft has a uniform

cross section, Hence Eq. (8.66) becomes

(8.67)c = A
G

r

I0 = rJ.

c = A
GJ

I0

c2
 

0
2u

0x2
 (x, t) =

0
2u

0t2
 (x, t)

GJ 

0
2u

0x2
 (x, t) + f(x, t) = I0  

0
2u

0t2
 (x, t)

0

0x
 BGJ(x) 

0u

0x
 (x, t)R + f(x, t) = I0(x)  

0
2u

0t2
 (x, t)

dxx

l

O

(a)

Mt(x, t)

f(x, t) dx

Mt(x, t) * dMt(x, t)
u(x, t)

u(x, t) * du(x, t)

dx

(b)

x

FIGURE 8.11 Torsional vibration of a shaft.
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If the shaft is given an angular displacement and an angular velocity at 

the initial conditions can be stated as

(8.68)

The general solution of Eq. (8.65) can be expressed as

(8.69)

The common boundary conditions for the torsional vibration of uniform shafts are indicated

in Fig. 8.12 along with the corresponding frequency equations and the normal functions.

u(x, t) = aA cos 
vx

c
+ B sin 

vx

c
b (C cos vt + D sin vt)

0u

0t
 (x, t = 0) = u

 #

0(x)

 u(x, t = 0) = u0(x)

t = 0,u
 #

0(x)u0(x)

End Conditions
of Shaft

Boundary
Conditions

Frequency
Equation

Mode Shape
(Normal Function)

Natural
Frequencies

cos     , 0
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vl
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(2n * 1) pc
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npc

l
vn , ;

npc

l
vn , ;

n , 0, 1, 2, . . .

n , 0, 1, 2, . . .

n , 1, 2, 3, . . .

Fixed-free

Free-free

Fixed-fixed

u(0, t) , 0

u(0, t) , 0

u(l, t) , 0
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u

u

u

FIGURE 8.12 Boundary conditions for uniform shafts (rods) subjected to torsional vibration.

E X A M P L E  8 . 6
Natural Frequencies of a Milling Cutter

Find the natural frequencies of the plane milling cutter shown in Fig. 8.13 when the free end of the

shank is fixed. Assume the torsional rigidity of the shank as GJ and the mass moment of inertia of the

cutter as 

Solution: The general solution is given by Eq. (8.69). From this equation, by using the fixed

boundary condition we obtain The boundary condition at can be stated as

(E.1)

That is,

BGJ 

v

c
 cos 

vl

c
= BI0 

v
2 sin 

vl

c

GJ 

0u

0x
  (l, t) = -I0  

0
2
u

0t2
  (l, t)

x = lA = 0.u(0, t) = 0,

I0.
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or

(E.2)

where Equation (E.2) can be expressed as

(E.3)

The solution of Eq. (E.3), and thus the natural frequencies of the system, can be obtained as in the

case of Example 8.4.

*

8.5 Lateral Vibration of Beams

a tan a = b where a =
vl

c
 and b =

J' rod

I0

J
' rod = Jrl.

vl

c
 tan 

vl

c
=

Jrl

I0
=

J'rod

I0

Shank

Milling cutter

l

FIGURE 8.13 Plane milling cutter.

8.5.1
Equation of
Motion

Consider the free-body diagram of an element of a beam shown in Fig. 8.14, where M(x, t)

is the bending moment, V(x, t) is the shear force, and f(x, t) is the external force per unit

length of the beam. Since the inertia force acting on the element of the beam is

the force equation of motion in the z direction gives

(8.70)

where is the mass density and A(x) is the cross-sectional area of the beam. The moment

equation of motion about the y-axis passing through point O in Fig. 8.14 leads to

(8.71)(M + dM) - (V + dV) dx + f(x, t) dx 
dx

2
- M = 0

r

-  (V + dV) + f(x, t) dx + V = rA(x) dx 

0
2w

0t2
  (x, t)

rA(x) dx 
0

2w

0t2
 (x, t)
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By writing

and disregarding terms involving second powers in dx, Eqs. (8.70) and (8.71) can be written as

(8.72)

(8.73)

By using the relation from Eq. (8.73), Eq. (8.72) becomes

(8.74)

From the elementary theory of bending of beams (also known as the Euler-Bernoulli or

thin beam theory), the relationship between bending moment and deflection can be

expressed as [8.8]

(8.75)

where E is Young s modulus and I(x) is the moment of inertia of the beam cross section

about the y-axis. Inserting Eq. (8.75) into Eq. (8.74), we obtain the equation of motion for

the forced lateral vibration of a nonuniform beam:

(8.76)
0

2

0x2
 cEI(x) 

0
2w

0x2
  (x, t) d + rA(x)  

0
2w

0t2
  (x, t) = f(x, t)

M(x, t) = EI(x)  

0
2w

0x2
  (x, t)

-  

0
2M

0x2
 (x, t) + f(x, t) = rA(x)  

0
2w

0t2
  (x, t)

V = 0M/0x

0M

0x
 (x, t) - V(x, t) = 0

 -  

0V

0x
  (x, t) + f(x, t) = rA(x)  

0
2w

0t2
  (x, t)

dV =
0V

0x
 dx and dM =

0M

0x
 dx

dxx
dxx

xl

f(x, t)

f(x, t)

(a) (b)

z

w(x, t)
w(x, t)

V(x, t)

M(x, t) M(x, t) * dM(x, t)

V(x, t) * dV(x, t)

O O+

FIGURE 8.14 A beam in bending.
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For a uniform beam, Eq. (8.76) reduces to

(8.77)

For free vibration, and so the equation of motion becomes

(8.78)

where

(8.79)c = A
EI

rA

c2
 

0
4
w

0x4
  (x, t) +

0
2
w

0t2
 (x, t) = 0

f(x, t) = 0,

EI 

0
4
w

0x4
 (x, t) + rA  

0
2
w

0t2
 (x, t) = f(x, t)

8.5.2

Initial

Conditions

Since the equation of motion involves a second-order derivative with respect to time and a

fourth-order derivative with respect to x, two initial conditions and four boundary condi-

tions are needed for finding a unique solution for w(x, t). Usually, the values of lateral dis-

placement and velocity are specified as and at so that the initial

conditions become

(8.80) 
0w

0t
 (x, t = 0) = w

#

0(x)

 w(x, t = 0) = w0(x)

t = 0,w
 #

0(x)w0(x)

8.5.3

Free Vibration

The free-vibration solution can be found using the method of separation of variables as

(8.81)

Substituting Eq. (8.81) into Eq. (8.78) and rearranging leads to

(8.82)

where is a positive constant (see Problem 8.45). Equation (8.82) can be written as

two equations:

(8.83)

(8.84)

where

(8.85)b4
=
v2

c2
=
rAv2

EI

d2T(t)

dt2
+ v2T(t) = 0

d4W(x)

dx4
- b4W(x) = 0

a = v2

c2

W(x)
  

d4W(x)

dx4
= -  

1

T(t)
  

d2T(t)

dt2
= a = v2

w(x, t) = W(x)T(t)
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The solution of Eq. (8.84) can be expressed as

(8.86)

where A and B are constants that can be found from the initial conditions. For the solution

of Eq. (8.83), we assume

(8.87)

where C and s are constants, and derive the auxiliary equation as

(8.88)

The roots of this equation are

(8.89)

Hence the solution of Eq. (8.83) becomes

(8.90)

where and are constants. Equation (8.90) can also be expressed as

(8.91)

or

(8.92)

where and in each case, are different constants. The constants 

and can be found from the boundary conditions. The natural frequencies of the beam

are computed from Eq. (8.85) as

(8.93)

The function W(x) is known as the normal mode or characteristic function of the beam and

is called the natural frequency of vibration. For any beam, there will be an infinite num-

ber of normal modes with one natural frequency associated with each normal mode. The

unknown constants to in Eq. (8.91) or (8.92) and the value of in Eq. (8.93) can be

determined from the boundary conditions of the beam as indicated below.

bC4C1

v

v = b2 A
EI

rA
= (bl)2 A

EI

rAl4

C4

C1, C2, C3,C4,C1, C2, C3,

 + C3(sin bx + sinh bx) + C4(sin bx - sinh bx)

 W(x) = C1(cos bx + cosh bx) + C2(cos bx - cosh bx)

W(x) = C1 cos bx + C2 sin bx + C3 cosh bx + C4 sinh bx

C4C1, C2, C3,

W(x) = C1e
bx

+ C2e- 
bx

+ C3e
ibx

+ C4e- 
ibx

s1,2 = ;b,  s3, 4 = ; ib

s4
- b4

= 0

W(x) = Cesx

T(t) = A cos vt + B sin vt

8.5.4
Boundary
Conditions

The common boundary conditions are as follows:

1. Free end:

 Bending moment = EI 

0
2w

0x2
= 0
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(8.94)

2. Simply supported (pinned) end:

(8.95)

3. Fixed (clamped) end:

(8.96)

The frequency equations, the mode shapes (normal functions), and the natural fre-

quencies for beams with common boundary conditions are given in Fig. 8.15

[8.13, 8.17]. We shall now consider some other possible boundary conditions for a

beam.

4. End connected to a linear spring, damper, and mass (Fig. 8.16(a)): When the end of a

beam undergoes a transverse displacement w and slope with velocity 

and acceleration the resisting forces due to the spring, damper, and mass are

proportional to w, and respectively. This resisting force is balanced by

the shear force at the end. Thus

(8.97)

where for the left end and for the right end of the beam. In addition, the

bending moment must be zero; hence

(8.98)

5. End connected to a torsional spring, torsional damper, and rotational inertia (Fig.

8.16(b)): In this case, the boundary conditions are

(8.99)

where for the left end and for the right end of the beam, and

(8.100)
0

0x
 BEI 

0
2w

0x2 R = 0

-1a = +1

EI 

0
2w

0x2
= aBkt 

0w

0x
+ ct 

0
2w

0x0t
+ I0 

0
3w

0x0t2R

EI 

0
2w

0x2
= 0

+1a = -1

0

0x
 ¢EI 

0
2w

0x2
= aBkw + c 

0w

0t
+ m 

0
2w

0t2 R

0
2w/0t2,0w/0t,

0
2w/0t2,

0w/0t0w/0x.

Deflection = 0,  Slope =
0w

0x
= 0

Deflection = w = 0,  Bending moment = EI 

0
2w

0x2
= 0

 Shear force =
0

0x
 ¢EI

0
2w

0x2
= 0
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End Conditions
of Beam

Frequency
Equation Mode Shape (Normal Function)

Pinned-pinned

Free-free

Fixed-fixed

Fixed-free

Fixed-pinned

Pinned-free

Value of bnl

sin bnl  0

cos bnl · cosh bnl  1

cos bnl · cosh bnl  1

cos bnl · cosh bnl  1

tan bnl  tanh bnl  0

tan bnl  tanh bnl  0

Wn(x)  Cn[sin bnx] b1l  p

b2l  2p
b3l  3p
b4l  4p

b1l    4.730041
b2l    7.853205
b3l  10.995608
b4l  14.137165

b1l    4.730041
b2l    7.853205
b3l  10.995608
b4l  14.137165

b1l    1.875104
b2l    4.694091
b3l    7.854757
b4l  10.995541

b1l    3.926602
b2l    7.068583
b3l  10.210176
b4l  13.351768

(bl    0 for rigid- 
body mode)

b1l    3.926602
b2l    7.068583
b3l  10.210176
b4l  13.351768
(bl    0 for rigid- 
body mode)

Wn(x)  Cn[sin bnx  sinh bnx

 an (cos bnx  cosh bnx)]

Wn(x)  Cn[sinh b nx nx  sin bnx

 an (cosh bnx  cos bnx)]

where

where

an 
sin bnl  sinh bnl

cosh bnl  cos bnl

Wn(x)  Cn[sin bnx  sinh bnx

 an (cos bnx  cosh bnx)]
where

an 
sin bnl  sinh bnl

cos bnl  cosh bnl

Wn(x)  Cn[sin bnx  sinh bnx

 an (cosh bnx  cos bnx)]
where

an 
sin bnl  sinh bnl

cos bnl  cosh bnl

Wn(x)  Cn[sin bnx  an sinh bnx]

where

an 
sin bnl

sinh bnl

an 
sinh bnl  sin bnl

cos bnl  cosh bnl

FIGURE 8.15 Common boundary conditions for the transverse vibration of a beam.

8.5.5
Orthogonality 
of Normal
Functions

The normal functions W(x) satisfy Eq. (8.83):

(8.101)

Let and be the normal functions corresponding to the natural frequencies 

and , so that

(8.102)c2 

d4Wi

dx4
- vi

2Wi = 0

vj(i Z j)

viWj(x)Wi(x)

c2  

d4W

dx4
 (x) - v

2W(x) = 0
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(a)

(b)

k1c1

m1

k2 c2

m2

Beam

x = 0 x = l

x = 0 x = l

Beamkt1 kt2

ct1 ct2
I01 I02

FIGURE 8.16 Beams connected with springs-dampers-masses at ends.

and

(8.103)

Multiplying Eq. (8.102) by and Eq. (8.103) by subtracting the resulting equations

one from the other, and integrating from 0 to l gives

or

(8.104)

where a prime indicates differentiation with respect to x. The right-hand side of Eq. (8.104)

can be evaluated using integration by parts to obtain

(8.105)L
l

0
WiWj dx = -  

c2

vi
2
- vj

2
 [WiW

Ô

j - WjW
Ô

i + WjWi - WiWj ] `
0

l

L
l

0
WiWj dx = -  

c2

vi
2
- vj

2L
l

0
(Wi Wj - WiWj ) dx

L
l

0
Bc2

 

d4Wi

dx4
 Wj - vi

2WiWjR  dx - L
l

0
Bc2

 

d4Wj

dx4
 Wi - vj

2WjWiR  dx = 0

Wi,Wj

c2
 

d4Wj

dx4
- vj

2Wj = 0
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The right-hand side of Eq. (8.105) can be shown to be zero for any combination of free,

fixed, or simply supported end conditions. At a free end, the bending moment and shear

force are equal to zero so that

(8.106)

For a fixed end, the deflection and slope are zero:

(8.107)

At a simply supported end, the bending moment and deflection are zero:

(8.108)

Since each term on the right-hand side of Eq. (8.105) is zero at or for any

combination of the boundary conditions in Eqs. (8.106) to (8.108), Eq. (8.105) reduces to

(8.109)

which proves the orthogonality of normal functions for the transverse vibration of beams.

L
l

0
WiWj dx = 0

x = lx = 0

W = 0,  W = 0

W = 0,  W¿ = 0

W = 0,  W = 0

E X A M P L E  8 . 7
Natural Frequencies of a Fixed-Pinned Beam

Determine the natural frequencies of vibration of a uniform beam fixed at and simply sup-

ported at 

Solution: The boundary conditions can be stated as

(E.1)

(E.2)

(E.3)

(E.4)

Condition (E.1) leads to

(E.5)

in Eq. (8.91), while Eqs. (E.2) and (8.91) give

or

(E.6)b[C2 + C4] = 0

dW

dx
`
x=0

= b[-   C1 sin bx + C2 cos bx + C3 sinh bx + C4 cosh bx]x=0 = 0

C1 + C3 = 0

EI 

d2W

dx2
 (l) = 0 or d2W

dx2
 (l) = 0

W(l) = 0

dW

dx
 (0) = 0

W(0) = 0

x = l.
x = 0
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Thus the solution, Eq. (8.91), becomes

(E.7)

Applying conditions (E.3) and (E.4) to Eq. (E.7) yields

(E.8)

(E.9)

For a nontrivial solution of and the determinant of their coefficients must be zero that is,

(E.10)

Expanding the determinant gives the frequency equation

or

(E.11)

The roots of this equation, give the natural frequencies of vibration

(E.12)

where the values of satisfying Eq. (E.11) are given in Fig. 8.15. If the value of 

corresponding to is denoted as it can be expressed in terms of from Eq. (E.8) as

(E.13)

Hence Eq. (E.7) can be written as

(E.14)

The normal modes of vibration can be obtained by the use of Eq. (8.81)

(E.15)

with given by Eq. (E.14). The general or total solution of the fixed-simply supported beam

can be expressed by the sum of the normal modes:

(E.16)

*

w(x, t) = a

q

n=1
 wn(x, t)

Wn(x)

wn(x, t) = Wn(x) (An cos vnt + Bn sin vnt)

Wn(x) = C1nB(cos bnx - cosh bnx) - ¢ cos bnl - cosh bnl

sin bnl - sinh bnl
(sin bnx - sinh bnx)R

C2n = -
 
C1n¢ cos bnl - cosh bnl

sin bnl - sinh bnl

C1nC2n,bn

C2bnl, n = 1, 2, Á

vn = (bnl)2
 ¢ EI

rAl4

1/2

,  n = 1, 2, Á

bnl,

tan bl = tanh bl

cos bl sinh bl - sin bl cosh bl = 0

` (cos bl - cosh bl) (sin bl - sinh bl)

-  (cos bl + cosh bl) -  (sin bl + sinh bl)
` = 0

C2,C1

-C1(cos bl + cosh bl) - C2(sin bl + sinh bl) = 0

C1(cos bl - cosh bl) + C2(sin bl - sinh bl)  = 0

W(x) = C1(cos bx - cosh bx) + C2(sin bx - sinh bx)
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8.5.6

Forced Vibration

The forced-vibration solution of a beam can be determined using the mode superposition

principle. For this, the deflection of the beam is assumed as

(8.110)

where is the nth normal mode or characteristic function satisfying the differential

equation (Eq. 8.101)

(8.111)

and is the generalized coordinate in the nth mode. By substituting Eq. (8.110) into

the forced-vibration equation, Eq. (8.77), we obtain

(8.112)

In view of Eq. (8.111), Eq. (8.112) can be written as

(8.113)

By multiplying Eq. (8.113) throughout by integrating from 0 to l, and using the

orthogonality condition, Eq. (8.109), we obtain

(8.114)

where is called the generalized force corresponding to 

(8.115)

and the constant b is given by

(8.116)

Equation (8.114) can be identified to be, essentially, the same as the equation of motion of

an undamped single-degree-of-freedom system. Using the Duhamel integral, the solution

of Eq. (8.114) can be expressed as

(8.117) +
1

rAbvn3
 t

0 
Qn (t) sin vn(t - t) dt

 qn(t) = An cos vnt + Bn sin vnt

b = 3
 l

0 
Wn

2(x) dx

Qn(t) = 3
 l

0 
f(x, t)Wn(x) dx

qn(t)Qn(t)

d2qn(t)

dt2
+ vn

2 qn(t) =
1

rAb
 Qn(t)

Wm(x),

a
q

n=1
 vn

2Wn(x)qn(t) + a
q

n=1
 Wn(x) 

d2qn(t)

dt2
=

1

rA
  f(x, t)

EI a
q

n=1

d4Wn(x)

dx4
 qn(t) + rA a

q

n=1
 Wn(x) 

d2qn(t)

dt2
= f(x, t)

qn(t)

EI 

d4Wn(x)

dx4
- vn

2
 r AWn(x) = 0;         n = 1, 2, Á

Wn(x)

w(x, t) = a
q

n=1
 Wn(x)qn(t)
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where the first two terms on the right-hand side of Eq. (8.117) represent the transient or

free vibration (resulting from the initial conditions) and the third term denotes the steady-

state vibration (resulting from the forcing function). Once Eq. (8.117) is solved for

the total solution can be determined from Eq. (8.110).n = 1, 2, Á ,

E X A M P L E  8 . 8
Forced Vibration of a Simply Supported Beam

Find the steady-state response of a pinned-pinned beam subject to a harmonic force 

applied at as shown in Fig. 8.17.

Solution: Approach: Mode superposition method.

The normal mode functions of a pinned-pinned beam are given by (see Fig. 8.15; also Problem 8.33)

(E.1)

where

(E.2)

The generalized force given by Eq. (8.115), becomes

(E.3)

The steady-state response of the beam is given by Eq. (8.117)

(E.4)

where

(E.5)

The solution of Eq. (E.4) can be expressed as

(E.6)

Thus the response of the beam is given by Eq. (8.110):

(E.7)w(x, t) =
2f0

rAl
 a
q

n=1
 

1

vn
2
- v2

 sin 
npa

l
 sin 

npx

l
 sin vt

qn(t) =
2f0

rAl
 

sin npa
l

vn
2
- v2

 sin vt

b = L
 l

0
Wn

2(x) dx = L
 l

0
sin2 bnx dx =

l

2

qn(t) =
1

rAbvnL
 t

0
Qn(t) sin vn (t - t) dt

Qn(t) = L
 l

0
f(x, t) sin bnx dx = f0 sin 

npa

l
 sin vt

Qn(t),

bnl = np

Wn(x) = sin bnx = sin 

npx

l

x = a,
f(x, t) = f0 sin vt

l

a

f0 sin vt

FIGURE 8.17 Pinned-pinned beam under

harmonic force. *
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8.5.7

Effect of Axial

Force

The problem of vibrations of a beam under the action of axial force finds application in

the study of vibrations of cables and guy wires. For example, although the vibrations of

a cable can be found by treating it as an equivalent string, many cables have failed due to

fatigue caused by alternating flexure. The alternating flexure is produced by the regular

shedding of vortices from the cable in a light wind. We must therefore consider the

effects of axial force and bending stiffness on lateral vibrations in the study of fatigue

failure of cables.

To find the effect of an axial force P(x, t) on the bending vibrations of a beam, con-

sider the equation of motion of an element of the beam, as shown in Fig. 8.18. For the ver-

tical motion, we have

(8.118)

and for the rotational motion about 0,

(8.119)

For small deflections,

sin(u + du) M u + du = u +
0u

0x
 dx =

0w

0x
+
0

2
w

0x2
 dx

(M + dM) - (V + dV) dx + f dx 
dx

2
- M = 0

-  (V + dV) + f dx + V + (P + dP) sin(u + du) - P sin u = rA dx 
0

2
w

0t2

dxx

dxx

f(x, t)

P(x, t)

w(x, t)

O
u

O

VM

P

x

x

f dx

V V
x

dx

P P
x

dx

M M
x

dx

u u

x
dx

FIGURE 8.18 An element of a beam under axial load.
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With this, Eqs. (8.118), (8.119), and (8.75) can be combined to obtain a single differential

equation of motion:

(8.120)

For the free vibration of a uniform beam, Eq. (8.120) reduces to

(8.121)

The solution of Eq. (8.121) can be obtained using the method of separation of variables as

(8.122)

Substitution of Eq. (8.122) into Eq. (8.121) gives

(8.123)

By assuming the solution W(x) to be

(8.124)

in Eq. (8.123), the auxiliary equation can be obtained:

(8.125)

The roots of Eq. (8.125) are

(8.126)

and so the solution can be expressed as (with absolute value of )

(8.127)

where the constants to are to be determined from the boundary conditions.C4C1

W(x) = C1 cosh s1x + C2 sinh s1x + C3 cos s2x + C4 sin s2x

s2

s1
2, s2

2
=

P

2EI
; ¢ P2

4E2I2
+
rAv2

EI

1/2

s4
-

P

EI
 s2

-
rAv2

EI
= 0

W(x) = Cesx

EI 

d4W

dx4
- P 

d2W

dx2
- rAv2W = 0

w(x, t) = W(x) (A cos vt + B sin vt)

EI 

0
4
w

0x4
+ rA 

0
2
w

0t2
- P 

0
2
w

0x2
= 0

0
2

0x2
 BEI 

0
2
w

0x2 R + rA 

0
2
w

0t2
- P 

0
2
w

0x2
= f

E X A M P L E  8 . 9
Beam Subjected to an Axial Compressive Force

Find the natural frequencies of a simply supported beam subjected to an axial compressive force.

Solution: The boundary conditions are

(E.1)

(E.2)
d2W

dx2
 (0) = 0

W(0)  = 0



734 CHAPTER 8 CONTINUOUS SYSTEMS

(E.3)

(E.4)

Equations (E.1) and (E.2) require that in Eq. (8.127), and so

(E.5)

The application of Eqs. (E.3) and (E.4) to Eq. (E.5) leads to

(E.6)

Since for all values of the only roots to this equation are

(E.7)

Thus Eqs. (E.7) and (8.126) give the natural frequencies of vibration:

(E.8)

Since the axial force P is compressive, P is negative. Further, from strength of materials, the smallest

Euler buckling load for a simply supported beam is given by [8.9]

(E.9)

Thus Eq. (E.8) can be written as

(E.10)

The following observations can be made from the present example:

1. If the natural frequency will be same as that of a simply supported beam given in Fig. 8.15.

2. If the natural frequency (see Eq. (E.8)) reduces to that of a taut string.

3. If the natural frequency increases as the tensile force stiffens the beam.

4. As the natural frequency approaches zero for 

*

n = 1.P: P cri,
P 7 0,
EI = 0,
P = 0,

vn =
p

2

l2
 +EI

rA
*1/2+n4

- n2
 

P

P cri

*1/2

P cri =
p

2EI

l2

vn =
p

2

l2
 A

EI

rA
 +n4

+
n2Pl2

p
2EI

* 1/2

s2l = np,  n = 0, 1, 2, Á

s1l Z 0,sinh s1l 7 0

sinh s1l # sin s2l = 0

W(x) = C2 sinh s1x + C4 sin s2x

C1 = C3 = 0

d2W

dx2
 (l)  = 0

W(l)  = 0

8.5.8
Effects of Rotary
Inertia and
Shear
Deformation

If the cross-sectional dimensions are not small compared to the length of the beam, we

need to consider the effects of rotary inertia and shear deformation. The procedure, pre-

sented by Timoshenko [8.10], is known as the thick beam theory or Timoshenko beam the-

ory. Consider the element of the beam shown in Fig. 8.19. If the effect of shear

deformation is disregarded, the tangent to the deflected center line coincides with the

normal to the face (since cross sections normal to the center line remain normal evenQ¿R¿
O¿T
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after deformation). Due to shear deformation, the tangent to the deformed center line 

will not be perpendicular to the face The angle between the tangent to the

deformed center line and the normal to the face denotes the shear deforma-

tion of the element. Since positive shear on the right face acts downward, we have,

from Fig. 8.19,

(8.128)

where denotes the slope of the deflection curve due to bending deformation alone. Note

that because of shear alone, the element undergoes distortion but no rotation.

The bending moment M and the shear force V are related to and w by the formulas2

(8.129)

and

(8.130)

where G denotes the modulus of rigidity of the material of the beam and k is a con-

stant, also known as Timoshenko s shear coefficient, which depends on the shape of

V = kAGg = kAG+f -
0w

0x
*

M = EI 
0f

0x

f

f

g = f -
0w

0x

Q¿R¿

(O¿N)(O¿T)
gQ¿R¿.

O¿T

2Equation (8.129) is similar to Eq. (8.75). Equation (8.130) can be obtained as follows:

or

This equation is modified as by introducing a factor k on the right-hand side to take care of the shape

of the cross section.

V = kAGg

V = gGA

Shear force = Shear stress * Area = Shear strain * Shear modulus * Area

dx

M + dM

N

w

V
M

V * dV

z,w

Q,

O,

P,

S,

R,

D
T +w

+x

+
2
w

+t2
rA dx

+
2f

+t2
rI dx

O

f

fg

FIGURE 8.19 An element of Timoshenko

beam.
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the cross section. For a rectangular section the value of k is 5/6; for a circular section

it is 9/10 [8.11].

The equations of motion for the element shown in Fig. 8.19 can be derived as follows:

1. For translation in the z direction:

(8.131)

2. For rotation about a line passing through point D and parallel to the y-axis:

(8.132)

Using the relations

along with Eqs. (8.129) and (8.130) and disregarding terms involving second powers in dx,

Eqs. (8.131) and (8.132) can be expressed as

(8.133)

(8.134)

By solving Eq. (8.133) for and substituting the result in Eq. (8.134), we obtain the

desired equation of motion for the forced vibration of a uniform beam:

 EI 
0

4w

0x4
+ rA 

0
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0t2
- rIa1 +

E

kG
b  

0
4w

0x2 
0t2
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4w

0t4

0f/0x
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0t2

 -  kAG + 0f
0x

-
0

2w

0x2 * + f(x, t) = rA 
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2w

0t2

dV =
0V

0x
 dx and dM =

0M

0x
 dx

 = rI(x) dx 
0

2f

0t2
K Rotary inertia of the element

 + f(x, t) dx 
dx

2
- M(x, t)

 [M(x, t) + dM(x, t)] + [V(x, t) + dV(x, t)] dx

 K Translational inertia of the element

 = rA(x) dx 
0

2w

0t2
 (x, t)

 -  [V(x, t) + dV(x, t)] + f(x, t) dx + V(x, t)
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(8.135)

For free vibration, and Eq. (8.135) reduces to

(8.136)

The following boundary conditions are to be applied in the solution of Eq. (8.135) or

(8.136):

1. Fixed end:

2. Simply supported end:

3. Free end:

kAGa 0w
0x

- fb = EI 
0f

0x
= 0

EI 
0f

0x
= w = 0

f = w = 0

EI 
0

4
w
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0
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E
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0
4
w
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0t2
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r2I

kG
 
0

4
w

0t4
= 0

f = 0,

 +
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kAG
 
0

2f

0x2
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rI

kAG
 
0

2f

0t2
- f = 0

E X A M P L E  8 . 1 0
Natural Frequencies of a Simply Supported Beam

Determine the effects of rotary inertia and shear deformation on the natural frequencies of a simply

supported uniform beam.

Solution: By defining

(E.1)

Eq. (8.136) can be written as

(E.2)

We can express the solution of Eq. (E.2) as
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npx
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4
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which satisfies the necessary boundary conditions at and Here, C is a constant and

is the nth natural frequency. By substituting Eq. (E.3) into Eq. (E.2), we obtain the frequency

equation:

(E.4)

It can be seen that Eq. (E.4) is a quadratic equation in and for any given n there are two values of

that satisfy Eq. (E.4). The smaller value corresponds to the bending deformation mode, while the

larger one corresponds to the shear deformation mode.

The values of the ratio of given by Eq. (E.4) to the natural frequency given by the classical

theory (in Fig. 8.15) are plotted for three values of E/kG in Fig. 8.20 [8.22].3

Note the following aspects of rotary inertia and shear deformation:

1. If the effect of rotary inertia alone is considered, the resulting equation of motion does not

contain any term involving the shear coefficient k. Hence we obtain (from Eq. (8.136)):

(E.5)

In this case the frequency equation (E.4) reduces to
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FIGURE 8.20 Variation of frequency.

3The theory used for the derivation of the equation of motion (8.76), which disregards the effects of rotary inertia

and shear deformation, is called the classical or Euler-Bernoulli or thin beam theory.
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2. If the effect of shear deformation alone is considered, the resulting equation of motion does

not contain the terms originating from in Eq. (8.134). Thus we obtain the equa-

tion of motion

(E.7)

and the corresponding frequency equation

(E.8)

3. If both the effects of rotary inertia and shear deformation are disregarded, Eq. (8.136) reduces

to the classical equation of motion, Eq. (8.78),

(E.9)

and Eq. (E.4) to

(E.10)
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The transverse vibration of tapered beams is presented in references [8.12, 8.14]. The nat-

ural frequencies of continuous beams are discussed by Wang [8.15]. The dynamic response

of beams resting on elastic foundation is considered in reference [8.16]. The effect of sup-

port flexibility on the natural frequencies of beams is presented in [8.18, 8.19]. A treatment

of the problem of natural vibrations of a system of elastically connected Timoshenko

beams is given in reference [8.20]. A comparison of the exact and approximate solutions of

vibrating beams is made by Hutchinson [8.30]. The steady-state vibration of damped

beams is considered in reference [8.21].

8.6 Vibration of Membranes
A membrane is a plate that is subjected to tension and has negligible bending resistance.

Thus a membrane bears the same relationship to a plate as a string bears to a beam. A

drumhead is an example of a membrane.

8.5.9
Other Effects

8.6.1
Equation 
of Motion

To derive the equation of motion of a membrane, consider the membrane to be bounded by

a plane curve S in the xy-plane, as shown in Fig. 8.21. Let f(x, y, t) denote the pressure load-

ing acting in the z direction and P the intensity of tension at a point that is equal to the

product of the tensile stress and the thickness of the membrane. The magnitude of P is usually
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This shows that the addition of a 10.0561-oz weight in the left plane at 145.5548° and a 5.8774-oz

weight in the right plane at 248.2559° from the reference position will balance the turbine rotor. It is

implied that the balance weights are added at the same radial distance as the trial weights. If a bal-

ance weight is to be located at a different radial position, the required balance weight is to be modi-

fied in inverse proportion to the radial distance from the axis of rotation.

*

9.5 Whirling of Rotating Shafts
In the previous section, the rotor system the shaft as well as the rotating body was

assumed to be rigid. However, in many practical applications, such as turbines, compres-

sors, electric motors, and pumps, a heavy rotor is mounted on a lightweight, flexible shaft

that is supported in bearings. There will be unbalance in all rotors due to manufacturing

errors. These unbalances as well as other effects, such as the stiffness and damping of the

shaft, gyroscopic effects, and fluid friction in bearings, will cause a shaft to bend in a com-

plicated manner at certain rotational speeds, known as the whirling, whipping, or critical

speeds. Whirling is defined as the rotation of the plane made by the line of centers of the

bearings and the bent shaft. We consider the aspects of modeling the rotor system, critical

speeds, response of the system, and stability in this section [9.13 9.14].

9.5.1
Equations of
Motion

Consider a shaft supported by two bearings and carrying a rotor or disc of mass m at the

middle, as shown in Fig. 9.11. We shall assume that the rotor is subjected to a steady-state

excitation due to mass unbalance. The forces acting on the rotor are the inertia force due to

the acceleration of the mass center, the spring force due to the elasticity of the shaft, and

the external and internal damping forces.3

3Any rotating system responds in two different ways to damping or friction forces, depending upon whether the

forces rotate with the shaft or not. When the positions at which the forces act remain fixed in space, as in the case

of damping forces (which cause energy losses) in the bearing support structure, the damping is called stationary

or external damping. On the other hand, if the positions at which they act rotate with the shaft in space, as in the

case of internal friction of the shaft material, the damping is called rotary or internal damping.

y

x

O

C

Rotor or disc Shaft

FIGURE 9.11 Shaft carrying a rotor.
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Let O denote the equilibrium position of the shaft when balanced perfectly, as shown

in Fig. 9.12. The shaft (line CG) is assumed to rotate with a constant angular velocity 

During rotation, the rotor deflects radially by a distance (in steady state). The

rotor (disc) is assumed to have an eccentricity a so that its mass center (center of gravity)

G is at a distance a from the geometric center, C. We use a fixed coordinate system (x and

y fixed to the earth) with O as the origin for describing the motion of the system. The angu-

lar velocity of the line OC, is known as the whirling speed and, in general, is

not equal to The equations of motion of the rotor (mass m) can be written as

(9.25)

The various forces in Eq. (9.25) can be expressed as follows:

(9.26)

where denotes the radius vector of the mass center G given by

(9.27)

with x and y representing the coordinates of the geometric center C and and denoting

the unit vectors along the x and y coordinates, respectively. Equations (9.26) and (9.27)

lead to

(9.28)
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FIGURE 9.12 Rotor with eccentricity.
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where k is the stiffness of the shaft.

(9.30)

where is the internal or rotary damping coefficient:

(9.31)

where c is the external damping coefficient. By substituting Eqs. (9.28) to (9.31) into

Eq. (9.25), we obtain the equations of motion in scalar form:

(9.32)

(9.33)

These equations of motion, which describe the lateral vibration of the rotor, are coupled

and are dependent on the speed of the steady-state rotation of the shaft, By defining a

complex quantity w as

(9.34)

where and by adding Eq. (9.32) to Eq. (9.33) multiplied by i, we obtain a sin-

gle equation of motion:

(9.35)mw
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+ 1ci + c2w# + kw - ivciw = mv2a eivt
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w = x + iy
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Internal damping force: F
!

di = -ci [1x
#
+ vy2i
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+ 1y

#
+ vx2j

!
]

9.5.2
Critical Speeds

A critical speed is said to exist when the frequency of the rotation of a shaft equals one of

the natural frequencies of the shaft. The undamped natural frequency of the rotor system

can be obtained by solving Eqs. (9.32), (9.33), or (9.35), retaining only the homogeneous

part with This gives the natural frequency of the system (or critical speed of

the undamped system):

(9.36)

When the rotational speed is equal to this critical speed, the rotor undergoes large deflec-

tions, and the force transmitted to the bearings can cause bearing failures. A rapid transition

of the rotating shaft through a critical speed is expected to limit the whirl amplitudes, while

a slow transition through the critical speed aids the development of large amplitudes. Refer-

ence [9.15] investigates the behavior of the rotor during acceleration and deceleration

through critical speeds. A FORTRAN computer program for calculating the critical speeds

of rotating shafts is given in reference [9.16].

vn = a k

m
b1/   2

ci = c = 0.
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